- 741.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
云南省初中学业水平考试压轴题汇集
1.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
考点: 二次函数综合题..
专题: 综合题.
分析: (1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;
(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可.
解答: 解:(1)∵C(0,3),即OC=3,BC=5,
∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),
把B与C坐标代入y=kx+n中,得:,
解得:k=﹣,n=3,
∴直线BC解析式为y=﹣x+3;
由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,
把C(0,3)代入得:a=,
则抛物线解析式为y=x2﹣x+3;
(2)存在.
如图所示,分两种情况考虑:
∵抛物线解析式为y=x2﹣x+3,
∴其对称轴x=﹣=﹣=.
当PC⊥CB时,△PBC为直角三角形,
∵直线BC的斜率为﹣,
∴直线PC斜率为,
∴直线PC解析式为y﹣3=x,即y=x+3,
与抛物线对称轴方程联立得,
解得:,
此时P(,);
当P′B⊥BC时,△BCP′为直角三角形,
同理得到直线P′B的斜率为,
∴直线P′B方程为y=(x﹣4)=x﹣,
与抛物线对称轴方程联立得:,
解得:,
此时P′(,﹣2).
综上所示,P(,)或P′(,﹣2).
2.如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),
点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,
同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,
设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
解:(1)(1,0) 1分
点P运动速度每秒钟1个单位长度. 2分
(2) 过点作BF⊥y轴于点,⊥轴于点,则=8,.
∴.
在Rt△AFB中, 3分
过点作⊥轴于点,与的延长线交于点.
∵ ∴△ABF≌△BCH.
∴.
∴.
∴所求C点的坐标为(14,12). 4分
(3) 过点P作PM⊥y轴于点M,PN⊥轴于点N,
则△APM∽△ABF.
∴. .
∴. ∴.
设△OPQ的面积为(平方单位)
∴(0≤≤10) 5分
说明:未注明自变量的取值范围不扣分.
∵<0 ∴当时, △OPQ的面积最大. 6分
此时P的坐标为(,) . 7分
(4) 当 或时, OP与PQ相等.
3、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.
(1)直接写出两点的坐标;
(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;
x
A
O
Q
P
B
y
(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.
解(1)A(8,0)B(0,6) 1分
(2)
点由到的时间是(秒)
点的速度是(单位/秒) 1分
当在线段上运动(或0)时,
1分
当在线段上运动(或)时,,
如图,作于点,由,得, 1分
1分
(自变量取值范围写对给1分,否则不给分.)
(3) 1分
3分
4如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8),
∴OA=4,OB=8.
由题意,OP=-k,
∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2,
∴k=-3,∴OP等于⊙P的半径,
∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE=CD=,PD=3,
∴PE=.
∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,
∴△AOB∽△PEB,
∴,
∴
∴,
∴,
∴.
当圆心P在线段OB延长线上时,同理可得P(0,--8),
∴k=--8,
∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
5.如图1,在等腰梯形中,,是的中点,过点作交于点.,.
(1)求点到的距离;
(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.
①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;
②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
A
D
E
B
F
C
图4(备用)
A
D
E
B
F
C
图5(备用)
A
D
E
B
F
C
图1
图2
A
D
E
B
F
C
P
N
M
图3
A
D
E
B
F
C
P
N
M
(第25题)
解(1)如图1,过点作于点 1分
图1
A
D
E
B
F
C
G
∵为的中点,
∴
在中,∴ 2分
∴
即点到的距离为 3分
(2)①当点在线段上运动时,的形状不发生改变.
∵∴
∵∴,
同理 4分
如图2,过点作于,∵
图2
A
D
E
B
F
C
P
N
M
G
H
∴
∴
∴
则
在中,
∴的周长= 6分
②当点在线段上运动时,的形状发生改变,但恒为等边三角形.
当时,如图3,作于,则
类似①,
∴ 7分
∵是等边三角形,∴
此时, 8分
图3
A
D
E
B
F
C
P
N
M
图4
A
D
E
B
F
C
P
M
N
图5
A
D
E
B
F(P)
C
M
N
G
G
R
G
当时,如图4,这时
此时,
当时,如图5,
则又
∴
因此点与重合,为直角三角形.
∴
此时,
综上所述,当或4或时,为等腰三角形. 10分
6.(9分)(2014年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.
考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.
专题: 综合题;存在型;分类讨论.
分析: (1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.
(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.
(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.
解答: 解:(1)过点P作PH∥OA,交OC于点H,如图1所示.
∵PH∥OA,
∴△CHP∽△COA.
∴==.
∵点P是AC中点,
∴CP=CA.
∴HP=OA,CH=CO.
∵A(3,0)、C(0,4),
∴OA=3,OC=4.
∴HP=,CH=2.
∴OH=2.
∵PH∥OA,∠COA=90°,
∴∠CHP=∠COA=90°.
∴点P的坐标为(,2).
设直线DP的解析式为y=kx+b,
∵D(0,﹣5),P(,2)在直线DP上,
∴
∴
∴直线DP的解析式为y=x﹣5.
(2)①若△DOM∽△ABC,图2(1)所示,
∵△DOM∽△ABC,
∴=.
∵点B坐标为(3,4),点D的坐标为(0.﹣5),
∴BC=3,AB=4,OD=5.
∴=.
∴OM=.
∵点M在x轴的正半轴上,
∴点M的坐标为(,0)
②若△DOM∽△CBA,如图2(2)所示,
∵△DOM∽△CBA,
∴=.
∵BC=3,AB=4,OD=5,
∴=.
∴OM=.
∵点M在x轴的正半轴上,
∴点M的坐标为(,0).
综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).
(3)∵OA=3,OC=4,∠AOC=90°,
∴AC=5.
∴PE=PF=AC=.
∵DE、DF都与⊙P相切,
∴DE=DF,∠DEP=∠DFP=90°.
∴S△PED=S△PFD.
∴S四边形DEPF=2S△PED
=2×PE•DE
=PE•DE
=DE.
∵∠DEP=90°,
∴DE2=DP2﹣PE2.
=DP2﹣.
根据“点到直线之间,垂线段最短”可得:
当DP⊥AC时,DP最短,
此时DE取到最小值,四边形DEPF的面积最小.
∵DP⊥AC,
∴∠DPC=90°.
∴∠AOC=∠DPC.
∵∠OCA=∠PCD,∠AOC=∠DPC,
∴△AOC∽△DPC.
∴=.
∵AO=3,AC=5,DC=4﹣(﹣5)=9,
∴=.
∴DP=.
∴DE2=DP2﹣
=()2﹣
=.
∴DE=,
∴S四边形DEPF=DE
=.
∴四边形DEPF面积的最小值为.
点评: 本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.