中考专题复习应用题 7页

  • 285.50 KB
  • 2021-05-13 发布

中考专题复习应用题

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考复习--应用题 一、直译法 设元后,视元为已知数,根据题设条件,把数学语言直译为代数式,即可列出方程。‎ 例1. (2004年山西省)甲、乙两个建筑队完成某项工程,若两队同时开工,12天就可以完成工程;乙队单独完成该工程比甲队单独完成该工程多用10天。问单独完成此项工程,乙队需要多少天?‎ 解:设乙单独完成工程需x天,则甲单独完成工程需(x-10)天。根据题意,得 去分母,得 解得 经检验,都是原方程的根,但当时,,当时,,因时间不能为负数,所以只能取。‎ 答:乙队单独完成此项工程需要30天。‎ 点评:设乙单独完成工程需x天后,视x为已知,则根据题意,原原本本的把语言直译成代数式,则方程很快列出。‎ 二、列表法 设出未知数后,视元为已知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程(组)。‎ 例2. (2004年海淀区)在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分。某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场?平几场?‎ 解:设此队胜x场,平y场 由列表与题中数量关系,得 解这个方程组,得 答:此队胜6场,平4场。‎ 点评:通过列表格,将题目中的数量关系显露出来,使人明白,从胜、平、负的场数之和等于12,总得分22分是胜场、平场、负场得分之和。建立方程组,利用列表法求解使人易懂。‎ 三、线示法 运用图线,把已知和未知条件间的数量关系,用线性图表示出来,则等量关系可一目了然。‎ 例3. A、B两地间的路程为36里,甲从A地,乙从B地同时出发相向而行,二人相遇后,甲再走2小时30分钟到达B地,乙再行走1小时36分钟到达A地,求二人的速度?‎ 解:设甲的速度为x里/小时,乙的速度为y里/小时,2小时30分小时,1小时36分小时。从出发到相遇时间小时,甲从A到相遇点C要走里,乙从C地到A走了里;乙从B到C要走里,甲从C到B走里,从图1可以看清。‎ 图1‎ 于是 解得 答:甲、乙二人的速度分别是8里/小时,10里/小时。‎ 点评:把速度、时间、距离三者关系用线性图表示,再把数量关系写在直线图上,则等量关系一目了然。‎ 练习:‎ ‎1.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为,则下面所列方程正确的是( )‎ A. B.‎ C. D.‎ ‎2.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设个月后他至少有300元,则可以用于计算所需要的月数的不等式是 ( ) ‎ A. B. C. D.‎ ‎3.某市2009年国内生产总值(GDP)比2008年增长了12%,预计今年比2009年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( )‎ A. B.‎ C. D.‎ ‎4.现有一批设备需由景德镇运往相距300千米的南昌,甲、乙两车分别以80千米/时和60千米/时的速度同时出发,甲车在距南昌130千米的A处发现有部分设备丢在B处, 立即以原速返回到B处取回设备,为了还能比乙车提前到达南昌,开始加速以100千米/时的速度向南昌前进,设AB的距离为a千米.‎ ‎(1)写出甲车将设备从景德镇运到南昌所经过的路程(用含a的代数式表示);‎ 景德镇 甲 乙 B A 南昌 ‎(2)若甲车还能比乙车提前到达南昌,求a的取值范围.(不考虑其它因素)‎ ‎5.正在修建的高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,需费用120万元,若甲队单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元,问:(1)甲、乙两队单独完成此项工程各需多少天?‎ ‎(2)甲、乙两队单独完成此项工程各需费用多少万元?‎ ‎6.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.‎ 施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:‎ ‎(1)甲队单独完成这项工程刚好如期完成.‎ ‎(2)乙队单独完成这项工程要比规定日期多用6天.‎ ‎(3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.‎ ‎ 试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.‎ ‎7.某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有264户村民,村里得到34万元的政府资助款,不足部分由村民集资解决.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用的户数、修建用地情况见下表:‎ 沼气池 修建费用(万元/个)‎ ‎ 可供使用户数(户/个)‎ 占地面积(m2/个)‎ A型 ‎3‎ ‎20‎ ‎48‎ B型 ‎2‎ ‎3‎ ‎6‎ 政府土地部门只批给该村沼气池修建用地708m2.若修建A型沼气池x个,修建两种型号沼气池共需费用y万元.‎ ‎(1)求y与x之间的函数关系式;‎ ‎(2)既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种?‎ ‎(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案?‎ ‎8.某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:‎ 型利润 型利润 甲店 ‎200‎ ‎170‎ 乙店 ‎160‎ ‎150‎ ‎(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;‎ ‎(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;‎ ‎(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?‎ ‎9.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:‎ 体积(m3/件)‎ 质量(吨/件)‎ A型商品 ‎0.8‎ ‎0.5‎ B型商品 ‎2‎ ‎1‎ ‎(1)已知一批商品有A、B两种型号,体积一共是20 m3 ,质量一共是10.5吨,求A、B两种型号商品各有几件?‎ ‎(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6 m3,其收费方式有以下两种:‎ ‎①按车收费:每辆车运输货物到目的地收费600元;‎ ‎ ②按吨收费:每吨货物运输到目的地收费200元.‎ ‎ ‎ ‎ 要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少?并求出该方式下的运费是多少元?‎ ‎10.绿谷商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:‎ (1) 按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。农民田大伯到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?‎ 类别 冰箱 彩电 进价(元/台)‎ ‎2320‎ ‎1900‎ 售价(元/台)‎ ‎2420‎ ‎1980‎ (1) 为满足农民需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的。‎ ① 请你帮助该商场设计相应的进货方案;‎ ② 用哪种方案商场获得利润最大?‎ ③ 最大利润是多少?(利润=售价-进价),‎ ‎11.某企业信息部进行市场调研发现:‎ x(万元)‎ ‎1‎ ‎2‎ ‎2.5‎ ‎3‎ ‎5‎ yA(万元)‎ ‎0.4‎ ‎0.8‎ ‎1‎ ‎1.2‎ ‎2‎ 信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如表:‎ 信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.‎ ‎(1)求出yB与x的函数关系式.‎ ‎(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.‎ ‎(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?‎