- 8.63 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年河北省初中毕业生升学文化课考试
数学试卷
一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算: ( )
A. 5 B.1 C.-1 D.6
2.下列说法正确的是( )
A.1的相反数是-1 B.1的倒数是-1 C.1的立方根是±1 D.-1是无理数
3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )
图1—1
图1—2
图1—3
A
B
C
D
4.下列运算正确的是( )
A. B. C. D.
5.图2中的三视图所对应的几何体是( )
6.如图3,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )
A.△ABE B.△ACF C.△ABD D.△ADE
图3
图4
图5
7.在数轴上标注了四段范围,如图4,则表示的点落在( )
A.段① B.段 ② C.段③ D.段④
8.如图5,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )
A.120° B.130° C.140° D.150°
9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )
10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图像大致是( )
11.利用加减消元法解方程组,下列做法正确的是( )
A.要消去y,可以将 B.要消去x,可以将
C.要消去y,可以将 D.要消去x,可以将
12.若关于x的方程不存在实数根,则a的取值范围是( )
A.a<1 B.a>1 C.a≤1 D.a≥1
13. 将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )
图6
A. B. C. D.
14. 如图6,直线与直线(为常数)的交点在第四象限,则可能在( )
A. B.
C. D.
图7
15. 如图7,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;②△PAB的周长;
③△PMN的面积;④直线MN,AB之间的距离;
⑤∠APB的大小.
图8
其中会随点P的移动而变化的是( )
A.②③ B.②⑤ C.①③④ D.④⑤
16. 图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )
A.甲、乙都可以 B.甲、乙都不可以
C.甲不可以,乙可以 D.甲可以,乙不可以
二、 填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)
17.若,则
18.若,则的值为
图9
19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图9,则∠3+∠1-∠2= °
20.如图10,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=
图10
二、 解答题(本大题共6个小题,共66分。解答应写出文字说明、证明过程或演算步骤)
21. (本小题满分10分)
老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:
(1)求所捂的二次三项式;(2)若,求所捂二次三项式的值.
22. (本小题满分10分)
嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图11的四边形ABCD,并写出了如下不完整的已知和求证。
已知:如图11,在四边形ABCD中,
BC=AD,
AB= .
求证:四边形ABCD是 四边形.
图11
我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.
嘉淇
(1)在方框中填空,以补全已知和求证;
(2)按的想法写出证明;
证明:
(3)用文字叙述所证命题的逆命题为
21. (本小题满分10分)
水平放置的容器内原有210毫米高的水,如图12,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y毫米.
(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);
(2)仅放入6个大球后,开始放入小球,且小球个数为x小.
①求y与x小的函数关系式(不必写出x小的范围);
②限定水面高不超过260毫米,最多能放入几个小球?
图12
24.(本小题满分11分)
某厂生产A,B两种产品,其单价随市场变化而做相应调整,营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:
图13
A,B产品单价变化统计表
第一次
第二次
第三次
A产品单价
(元/件)
6
5.2
6.5
B产品单价
(元/件)
3.5
4
3
并求得了A产品三次单价的平均数和方差:
;
(1)补全图13中B产品单价变化的折线图,B产品第三次的单价比上一次的单价降低了 %;
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值。
25. (本小题满分11分)
如图14,已知点O(0,0),A(-5,0),B(2,1),抛物线(h为常数)与y轴的交点为C。
(1)经过点B,求它的解析式,并写出此时的对称轴及顶点坐标;
(2)设点C的纵坐标为,求的最大值,此时上有两点,,其中,比较与的大小;
(3)当线段OA被只分为两部分,且这两部分的比是1:4时,求h的值。
图13
图15-1
26.(本小题满分14分)
平面上,矩形ABCD与直径为QP的半圆K如图15-1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2, OA=AB=1,让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为.
发现:(1)当,即初始位置时,点P 直线AB上.
(填“在”或“不在”)
求当是多少时,OQ经过点B?
(2)在OQ旋转过程中,简要说明是多少时,点P,A间的距离最小?并指出这个最小值;
(3) 如图15-2,当点P恰好落在BC边上时,求及.
图15-2
拓展:如图15-3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
图15-3
探究:当半圆K与矩形ABCD的边相切时,求sin的值.
备用图