- 108.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第15讲 等腰、等边及直角三角形
一、 知识清单梳理
知识点一:等腰和等边三角形
关键点拨与对应举例
1.等腰三角形
(1)性质
①等边对等角:两腰相等,底角相等,即AB=AC∠B=∠C;
②三线合一:顶角的平分线、底边上的中线和底边上的高
互相重合;
③对称性:等腰三角形是轴对称图形,直线AD是对称轴.
(2)判定
①定义:有两边相等的三角形是等腰三角形;
②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.
(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.
失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.
2.等边三角形
(1)性质
①边角关系:三边相等,三角都相等且都等于60°.
即AB=BC=AC,∠BAC=∠B=∠C=60°;
②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.
(2)判定
①定义:三边都相等的三角形是等边三角形;
②三个角都相等(均为60°)的三角形是等边三角形;
③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.
(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.
(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.
例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.
知识点二 :角平分线和垂直平分线
3.角平分线
(1)性质:角平分线上的点到角的两边的距离相等.即若
∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.
(2)判定:角的内部到角的两边的距离相等的点在角的角平
分线上.
例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.
4.垂直平分线图形
(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.
(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.
知识点三:直角三角形的判定与性质
5.直角三角形的性质
(1)两锐角互余.即∠A+∠B=90°;
(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=AB;
(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h
(3) 斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=AB.
(4) 勾股定理:两直角边a、b的平方和等于斜边c的平方.即 a2+b2=c2 .
是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.
(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.
(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.
6.直角三角形的判定
(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;
(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△
(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.
一、 典例试做:
内参P56---5、6、7、17、20
P58---1、2、4、11、17
三、课后反思:
相关文档
- 2009年湖南省株洲市初中毕业学业考2021-05-139页
- 2008年浙江省金华市初中毕业生学业2021-05-138页
- 新江生产建设兵团2020年初中学业水2021-05-137页
- 人教版初中数学知识点汇总中考复习2021-05-1333页
- 2009年湖南省怀化市初中毕业学业考2021-05-139页
- 初中物理功和机械能中考精选试题含2021-05-1319页
- 2009年广西省钦州市初中毕业升学考2021-05-139页
- 2009年湖南省张家界市初中毕业学业2021-05-139页
- 2009年江西省南昌市初中毕业暨中等2021-05-1313页
- 2008年广东省湛江市初中毕业生水平2021-05-1311页