- 451.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
概率的计算
一、选择题
1.掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( )
A.1 B. C. D.0
2.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是( )
A. B. C. D.
3.一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为( )
A. B. C. D.
4.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是( )
A.1 B. C. D.
5.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )
A. B. C. D.
6.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )
A. B. C. D.
7.课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是( )
A. B. C. D.
8.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )
A. B. C. D.
9.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )
A. B. C. D.
10.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
A. B. C. D.
11.四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为( )
A. B. C. D.1
12.从1到9这九个自然数中任取一个,是偶数的概率是( )
A. B. C. D.
13.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( )
A. B. C. D.
14.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是( )
A. B. C. D.
15.如图,在边长为1的正方形网格中,从A1,A2,A3中任选一点An(n=1,2,3),从B1,B2,B3,B4中任选一点Bm(m=1,2,3,4),与点O组成Rt△AnBmO,则tan∠AnBmO=1的概率是( )
A. B. C. D.
16.如图是某市7月1日
至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是( )
A. B. C. D.
二、填空题
17.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种.
18.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n= .
19.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是 .
20.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为 .
21.在一个不透明的袋子里装有6个白球和若干个黄球,它们除了颜色不同外,其它方面均相同,从中随机摸出一个球为白球的概率为,则黄球的个数为 .
22.在一个布口袋里装有白、红、黑三种颜色的小球.它们除颜色之外没有任何其他区别,其中白球有5只,红球3只,黑球1只.袋中的球已经搅匀,闭上眼睛随机地从袋中取出1只球,取出红球的概率是 .
23.在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是 .
24.在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是 .
25.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为 .
26.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是 .
27.从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为 .
28.在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组只有一个整数解的概率为 .
三、解答题
29.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.
30.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
概率的计算
参考答案与试题解析
一、选择题
1.掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( )
A.1 B. C. D.0
【考点】概率公式.菁优网版权所有
【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.
【解答】解:∵任意抛掷一个均匀的正方体骰子,朝上的点数总共会出现6种情况,且每一种情况出现的可能性相等,而朝上一面的点数为5的只有一种,
∴朝上一面的点数为5的概率是.
故选C.
【点评】本题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
2.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】让红豆粽的总个数除以粽子的总个数即为小颖吃到红豆粽的概率.
【解答】解:P(红豆粽)==.
故选:B.
【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
3.一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.
【解答】解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个,
从袋子中随机摸出一个球,它是黄球的概率2÷6=.
故选:B.
【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
4.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是( )
A.1 B. C. D.
【考点】概率公式.菁优网版权所有
【分析】由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.
【解答】解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,
∴甲抽到1号跑道的概率是:.
故选D.
【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
5.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】让向上一面的数字是大于4的情况数除以总情况数6即为所求的概率.
【解答】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,
大于4为5,6,则向上一面的数字是大于4的概率为=.
故选:C.
【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.
6.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,
从中随机摸出一个,则摸到红球的概率是=.
故选:D.
【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
7.课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】游戏中一共有3种情况:“剪刀”、“石头”、“布”,其中是“剪刀”的情况只有一种.利用概率公式进行计算即可.
【解答】解:小亮与小明一起玩“剪刀、石头、布”的游戏,
一共有3种情况:“剪刀”、“石头”、“布”,并且每一种情况出现的可能性相同,
所以小明出“剪刀”的概率是.
故选B.
【点评】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
8.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】根据一共有9个人,其中偶数有4个,利用概率公式求出即可.
【解答】解:∵小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,
∴偶数一共有4个,
∴小李报到偶数的概率是:.
故选:B.
【点评】此题主要考查了概率公式的应用,根据已知得出偶数的个数是解题关键.
9.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【解答】解:根据题意可得:大于2的有3,4,5三个球,共5个球,
任意摸出1个,摸到大于2的概率是.
故选C.
【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.
10.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解;袋子中球的总数为:2+3=5,
取到黄球的概率为:.
故选:B.
【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
11.四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为( )
A. B. C. D.1
【考点】概率公式;轴对称图形.菁优网版权所有
【专题】压轴题.
【分析】卡片共有四张,轴对称图形有等腰梯形、圆,根据概率公式即可得到抽取的卡片是轴对称图形的概率.
【解答】解:四张卡片中,轴对称图形有等腰梯形、圆,
根据概率公式,P(轴对称图形)==.
故选A.
【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12.从1到9这九个自然数中任取一个,是偶数的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】先从1~9这九个自然数中找出是偶数的有2、4、6、8共4个,然后根据概率公式求解即可.
【解答】解:1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个,
∴从1~9这九个自然数中任取一个,是偶数的概率是:.
故选:B.
【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
13.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【分析】让红球的个数除以球的总个数即为所求的概率.
【解答】解:因为一共有6个球,红球有2个,
所以从布袋里任意摸出1个球,摸到红球的概率为: =.
故选D.
【点评】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
14.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【专题】压轴题.
【分析】首先根据题意可得:可能的结果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.
【解答】解:∵她只记得号码的前5位,后三位由5,1,2,这三个数字组成,
∴可能的结果有:512,521,152,125,251,215;
∴他第一次就拨通电话的概率是:.
故选C.
【点评】此题考查了列举法求概率的知识.注意概率=所求情况数与总情况数之比.
15.如图,在边长为1的正方形网格中,从A1,A2,A3中任选一点An(n=1,2,3),从B1,B2,B3,B4中任选一点Bm(m=1,2,3,4),与点O组成Rt△AnBmO,则tan∠AnBmO=1的概率是( )
A. B. C. D.
【考点】概率公式;特殊角的三角函数值.菁优网版权所有
【分析】将所有等可能的结果列举出来,利用概率公式求解即可.
【解答】解:从A1,A2,A3中任选一点An(n=1,2,3),从B1,B2,B3,B4中任选一点Bm(m=1,2,3,4),与点O组成Rt△AnBmO,共有3×4=12种情况,
∵tan∠AnBmO=1,
∴∠AnBmO=45°,
∴△AnBmO为等腰直角三角形,
共有△A1B1O,△A2B2O,△A3B3O三种情况,
∴tan∠AnBmO=1的概率是=,
故选C.
【点评】本题考查了概率公式及特殊角的三角函数值,牢记概率公式是解答本题的关键,难度不大.
16.如图是某市7月1日
至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是( )
A. B. C. D.
【考点】概率公式;折线统计图.菁优网版权所有
【专题】图表型.
【分析】先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.
【解答】解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;
当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;
当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;
当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;
当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;
当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;
当7号到达时,停留的日子为7、8、9号,此时为(40,217,160),1天空气质量为优;
当8号到达时,停留的日子为8、9、10号,此时为(217,160,121),空气质量为污染
∴此人在该市停留期间有且仅有1天空气质量优良的概率==.
故选:C.
【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
二、填空题
17.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.
【考点】概率公式;轴对称图形.菁优网版权所有
【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.
【解答】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,
选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.
故答案为:3.
【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
18.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n= 4 .
【考点】概率公式.菁优网版权所有
【分析】根据口袋中放入红球6个,黑球2个,黄球n个,故球的总个数为6+2+n,再根据黄球的概率公式列式解答即可.
【解答】解:∵口袋中放入红球6个,黑球2个,黄球n个,
∴球的总个数为6+2+n,
∵搅匀后随机从中摸出一个恰好是黄球的概率为,
=,
解得,n=4.
故答案为:4.
【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
19.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是 .
【考点】概率公式;轴对称图形;中心对称图形.菁优网版权所有
【分析】由正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,利用概率公式即可求得答案.
【解答】解:∵正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,
∴既是中心对称图形又是轴对称图形的概率是:.
故答案为:.
【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
20.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为 .
【考点】概率公式.菁优网版权所有
【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.
【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,
掷得面朝上的点数大于4的概率是: =.
故答案为:.
【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
21.在一个不透明的袋子里装有6个白球和若干个黄球,它们除了颜色不同外,其它方面均相同,从中随机摸出一个球为白球的概率为,则黄球的个数为 2 .
【考点】概率公式.菁优网版权所有
【分析】首先设黄球的个数为x个,根据题意,利用概率公式即可得方程: =,解此方程即可求得答案.
【解答】解:设黄球的个数为x个,
根据题意得, =,
解得:x=2.
故答案为2.
【点评】此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,注意概率=所求情况数与总情况数之比.
22.在一个布口袋里装有白、红、黑三种颜色的小球.它们除颜色之外没有任何其他区别,其中白球有5只,红球3只,黑球1只.袋中的球已经搅匀,闭上眼睛随机地从袋中取出1只球,取出红球的概率是 .
【考点】概率公式.菁优网版权所有
【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.
【解答】解:根据题意可得:有一个口袋里装有白球5个,红球3个,黑球1个;
故从袋中取出一个球,是红球的概率为P(红球)=3÷(5+3+1)=.
故答案为:.
【点评】本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
23.在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是 .
【考点】概率公式;中心对称图形.菁优网版权所有
【分析】先求出中心对称图形的个数,除以卡片总张数即为恰好是中心对称图形的概率.
【解答】解:正三角形,正六边形、平行四边形和圆中,是中心对称图形的有圆、平行四边形、正六边形3个,
所以从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为:.
故答案为:.
【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
24.在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是 .
【考点】概率公式.菁优网版权所有
【分析】让绝对值不大于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.
【解答】解:∵数的总个数有9个,绝对值不大于2的数有﹣2,﹣1,0,1,2共5个,
∴任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.
故答案为.
【点评】本题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.得到绝对值不大于2的数的个数是解决本题的易错点.
25.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为 .
【考点】概率公式.菁优网版权所有
【专题】新定义.
【分析】首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.
【解答】解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,
故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为=,
故答案为:.
【点评】本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.
26.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是 .
【考点】概率公式.菁优网版权所有
【专题】常规题型.
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:根据题意可知,共有9个球,能被3整除的有3个,
故标号能被3整除的概率为=,
故答案为:.
【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
27.从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为 .
【考点】概率公式;解一元一次不等式组;一次函数图象上点的坐标特征.菁优网版权所有
【专题】探究型.
【分析】将﹣1,1,2分别代入y=2x+a,求出与x轴、y轴围成的三角形的面积,将﹣1,1,2分别代入,求出解集,有解者即为所求.
【解答】解:当a=﹣1时,y=2x+a可化为y=2x﹣1,与x轴交点为(,0),与y轴交点为(0,﹣1),
三角形面积为××1=;
当a=1时,y=2x+a可化为y=2x+1,与x轴交点为(﹣,0),与y轴交点为(0,1),
三角形的面积为××1=;
当a=2时,y=2x+2可化为y=2x+2,与x轴交点为(﹣1,0),与y轴交点为(0,2),
三角形的面积为×2×1=1(舍去);
当a=﹣1时,不等式组可化为,不等式组的解集为,无解;
当a=1时,不等式组可化为,解得,解集为,解得x=﹣1.
使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为P=.
故答案为:.
【点评】本题考查了概率公式、解一元一次不等式、一次函数与坐标轴的交点,有一定的综合性.
28.在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组只有一个整数解的概率为 .
【考点】概率公式;一元一次不等式组的整数解.菁优网版权所有
【分析】根据不等式组只有一个整数解可知较大的数比较小的数大1,列出方程求出a的值,再根据概率公式列式计算即可得解.
【解答】解:∵不等式组只有一个整数解,
∴(a+2)﹣(2a﹣1)=1,
解得a=2,
∴P=.
故答案为:.
【点评】本题考查的是概率公式,一元一次不等式组的正整数解,理解整数(a+2)比(2a﹣1)大1列出方程是解题的关键.
三、解答题
29.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.
【考点】概率公式;分式方程的应用.菁优网版权所有
【分析】(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;
(2)首先设从袋中取出x个黑球,根据题意得: =,继而求得答案.
【解答】解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,
∴从袋中摸出一个球是黄球的概率为: =;
(2)设从袋中取出x个黑球,
根据题意得: =,
解得:x=2,
经检验,x=2是原分式方程的解,
所以从袋中取出黑球的个数为2个.
【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.
30.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
【考点】概率公式.菁优网版权所有
【专题】图表型.
【分析】(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式即可求得答案;
(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.
【解答】解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,
∴P(转动一次转盘获得购物券)==.
(2)∵P(红色)=,
P(黄色)=,
P(绿色)==,
∴(元)
∵40元>30元,
∴选择转转盘对顾客更合算.
【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.