- 2.52 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018中考数专题二次函数
(共40题)
1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.
2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.
(1)写出C,D两点的坐标(用含a的式子表示);
(2)设S△BCD:S△ABD=k,求k的值;
(3)当△BCD是直角三角形时,求对应抛物线的解析式.
3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.
(1)求直线y=kx+b的函数解析式;
(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;
(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.
4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1
(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
6.我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:
(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;
(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;
(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,An在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长.
7.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
8.如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
9.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC上方抛物线上一动点;
①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;
②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.
10.已知二次函数y=﹣x2+bx+c+1,
①当b=1时,求这个二次函数的对称轴的方程;
②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?
③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.
11.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.
12.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
13.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
14.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
15.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.
16.如图,抛物线y=x2+bx+c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
17.如图1,抛物线C1:y=x2+ax与C2:y=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.
(1)求 的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.
18.如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.
(1)求过A、B、D三点的抛物线的解析式;
(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;
(3)抛物线的对称轴上是否存在一点H,使得△
ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
19.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
20.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.
21.如图1,抛物线y=x2+bx+c经过A(﹣2,0)、B(0,﹣2)两点,点C在y轴上,△ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t>0),过点D作DE⊥AC于点E,以DE为边作矩形DEGF,使点F在x轴上,点G在AC或AC的延长线上.
(1)求抛物线的解析式;
(2)将矩形DEGF沿GF所在直线翻折,得矩形D'E'GF,当点D的对称点D'落在抛物线上时,求此时点D'的坐标;
(3)如图2,在x轴上有一点M(2,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围.
22.如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.
(1)求抛物线的解析式;
(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点P,使△
PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
23.如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.
(1)①直接回答:△OBC与△ABD全等吗?
②试说明:无论点C如何移动,AD始终与OB平行;
(2)当点C运动到使AC2=AE•AD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.
24.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.
(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
25.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.
26.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+
4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).
(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.
27.如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点E从点A出发,以每秒个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角△EFG.
(1)求抛物线的解析式;
(2)当点G落在第一象限内的抛物线上时,求出t的值;
(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经过的路径长.
28.抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.
(1)求抛物线的表达式;
(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足=,求点D的坐标;
(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.
29.如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.
(1)试求该抛物线表达式;
(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;
(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.
①求证:△ACD是直角三角形;
②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?
30.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠
BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.
31.《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .
【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.
【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.
【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.
32.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t>0),二次函数y=x2+bx(b<0)的图象经过点B,顶点为点D.
(1)当t=12时,顶点D到x轴的距离等于 ;
(2)点E是二次函数y=x2+bx(b<0)的图象与x轴的一个公共点(点E与点O不重合),求OE•EA的最大值及取得最大值时的二次函数表达式;
(3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数y=x2+bx(b<
0)的图象于点M、N,连接DM、DN,当△DMN≌△FOC时,求t的值.
33.在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).
(1)求抛物线的解析式;
(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.
(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.
34.已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△
ACD相似,直接写出点M的坐标.
35.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)填空:b= ,c= ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
36.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线
y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
37.如图,直线y=﹣x+3与x轴,y轴分别相交于点B,C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求该抛物线的函数表达式;
(2)请问在抛物线上是否存在点Q,使得以点B,C,Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)过S(0,4)的动直线l交抛物线于M,N两点,试问抛物线上是否存在定点T,使得不过定点T的任意直线l都有∠MTN=90°?若存在,请求出点T的坐标;若不存在,请说明理由.
38.如图,抛物线C1:y1=ax2+2ax(a>0)与x轴交于点A,顶点为点P.
(1)直接写出抛物线C1的对称轴是 ,用含a的代数式表示顶点P的坐标 ;
(2)把抛物线C1绕点M(m,0)旋转180°得到抛物线C2(其中m>0),抛物线C2与x轴右侧的交点为点B,顶点为点Q.
①当m=1时,求线段AB的长;
②在①的条件下,是否存在△ABP为等腰三角形,若存在请求出a的值,若不存在,请说明理由;
③当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积.
39.已知二次函数y=ax2﹣4ax+a2+2(a<0)图象的顶点G在直线AB上,其中
A(﹣,0)、B(0,3),对称轴与x轴交于点E.
(1)求二次函数y=ax2﹣4ax+a2+2的关系式;
(2)点P在对称轴右侧的抛物线上,且AP平分四边形GAEP的面积,求点P坐标;
(3)在x轴上方,是否存在整数m,使得当<x≤时,抛物线y随x增大而增大?若存在,求出所有满足条件的m值;若不存在,请说明理由.
40.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.
参考答案与试题解析
(共40题)
1.(2017•兰州)如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.
【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,
∴,
∴,
∴抛物线的解析式为y=﹣x2﹣2x+4;
(2)设直线AB的解析式为y=kx+n过点A,B,
∴,
∴,
∴直线AB的解析式为y=2x+4,
设E(m,2m+4),
∴G(m,﹣m2﹣2m+4),
∵四边形GEOB是平行四边形,
∴EG=OB=4,
∴|﹣m2﹣2m+4﹣2m﹣4|=4,
∴m=﹣2或m=2+2或m=2﹣2,
∴G(﹣2,4)或(2+2,﹣12﹣12)或(2﹣2,﹣12+12).
(3)①如图1,
由(2)知,直线AB的解析式为y=2x+4,
∴设E(a,2a+4),
∵直线AC:y=﹣x﹣6,
∴F(a,﹣a﹣6),
设H(0,p),
∵以点A,E,F,H为顶点的四边形是矩形,
∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,
∴AB⊥AC,
∴EF为对角线,
∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),
∴a=﹣2,P=﹣1,
∴E(﹣2,0).H(0,﹣1);
②如图2,
由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),
∴EH=,AE=2,
设AE交⊙E于G,取EG的中点P,
∴PE=,
连接PC交⊙E于M,连接EM,
∴EM=EH=,
∴=,
∵=,
∴=,∵∠PEM=∠MEA,
∴△PEM∽△MEA,
∴,
∴PM=AM,
∴AM+CM的最小值=PC,
设点P(p,2p+4),
∵E(﹣2,0),
∴PE2=(p+2)2+(2p+4)2=5(p+2)2,
∵PE=,
∴5(p+2)2=,
∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),
∴P(﹣,﹣1),
∵C(0,﹣6),
∴PC==,
即:AM+CM=.
2.(2017•贵港)如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.
(1)写出C,D两点的坐标(用含a的式子表示);
(2)设S△BCD:S△ABD=k,求k的值;
(3)当△BCD是直角三角形时,求对应抛物线的解析式.
【解答】解:
(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,
∴C(0,3a),
∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,
∴D(2,﹣a);
(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,
∴A(1,0),B(3,0),
∴AB=3﹣1=2,
∴S△ABD=×2×a=a,
如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,
把C、D的坐标代入可得,解得,
∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,
∴E(,0),
∴BE=3﹣=
∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,
∴S△BCD:S△ABD=(3a):a=3,
∴k=3;
(3)∵B(3,0),C(0,3a),D(2,﹣a),
∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,
∵∠BCD<∠BCO<90°,
∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,
①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;
②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;
综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.
3.(2017•滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.
(1)求直线y=kx+b的函数解析式;
(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;
(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.
【解答】解:
(1)由题意可得,解得,
∴直线解析式为y=x+3;
(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,
则∠AHQ=∠ABO,且∠AHP=90°,
∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,
∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,
∴△PQH∽△BOA,
∴==,
设H(m,m+3),则PQ=x﹣m,HQ=m+3﹣(﹣x2+2x+1),
∵A(﹣4,0),B(0,3),
∴OA=4,OB=3,AB=5,且PH=d,
∴==,
整理消去m可得d=x2﹣x+=(x﹣)2+,
∴d与x的函数关系式为d=(x﹣)2+,
∵>0,
∴当x=时,d有最小值,此时y=﹣()2+2×+1=,
∴当d取得最小值时P点坐标为(,);
(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,
∴CE+EF=C′E+EF,
∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,
∵C(0,1),
∴C′(2,1),
由(2)可知当x=2时,d=×(2﹣)2+=,
即CE+EF的最小值为.
4.(2017•广安)如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1
(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
【解答】解:
(1)∵抛物线y=﹣x2+bx+c对称轴是直线x=1,
∴﹣=1,解得b=2,
∵抛物线过A(0,3),
∴c=3,
∴抛物线解析式为y=﹣x2+2x+3,
令y=0可得﹣x2+2x+3=0,解得x=﹣1或x=3,
∴B点坐标为(3,0);
(2)①由题意可知ON=3t,OM=2t,
∵P在抛物线上,
∴P(2t,﹣4t2+4t+3),
∵四边形OMPN为矩形,
∴ON=PM,
∴3t=﹣4t2+4t+3,解得t=1或t=﹣(舍去),
∴当t的值为1时,四边形OMPN为矩形;
②∵A(0,3),B(3,0),
∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,
∴当t>0时,OQ≠OB,
∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,
由题意可知OM=2t,
∴Q(2t,﹣2t+3),
∴OQ==,BQ==|2t﹣3|,
又由题意可知0<t<1,
当OB=QB时,则有|2t﹣3|=3,解得t=(舍去)或t=;
当OQ=BQ时,则有=|2t﹣3|,解得t=;
综上可知当t的值为或时,△BOQ为等腰三角形.
5.(2017•宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
【解答】解:
(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,
∴,解得,
∴抛物线解析式为y=﹣x2+4x+5;
(2)∵AD=5,且OA=1,
∴OD=6,且CD=8,
∴C(﹣6,8),
设平移后的点C的对应点为C′,则C′点的纵坐标为8,
代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,
∴C′点的坐标为(1,8)或(3,8),
∵C(﹣6,8),
∴当点C落在抛物线上时,向右平移了7或9个单位,
∴m的值为7或9;
(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,
∴抛物线对称轴为x=2,
∴可设P(2,t),
由(2)可知E点坐标为(1,8),
①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,
则∠BEF=∠BMP=∠QPN,
在△PQN和△EFB中
∴△PQN≌△EFB(AAS),
∴NQ=BF=OB﹣OF=5﹣1=4,
设Q(x,y),则QN=|x﹣2|,
∴|x﹣2|=4,解得x=﹣2或x=6,
当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,
∴Q点坐标为(﹣2,﹣7)或(6,﹣7);
②当BE为对角线时,
∵B(5,0),E(1,8),
∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),
设Q(x,y),且P(2,t),
∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,
∴Q(4,5);
综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).
6.(2017•贵阳)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:
(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;
(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;
(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,An在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长.
【解答】解:(1)∵抛物线y=ax2+bx经过点(﹣2,0)和(﹣1,3),
∴,解得,
∴抛物线的表达式为y=﹣3x2﹣6x;
(2)∵抛物线y=ax2+bx的顶点坐标是(﹣,﹣),且该点在直线y=﹣2x上,
∴﹣=﹣2×(﹣),
∵a≠0,∴﹣b2=4b,
解得b1=﹣4,b2=0;
(3)这组抛物线的顶点A1、A2、…,An在直线y=﹣2x上,
由(2)可知,b=4或b=0.
①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;
②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.
由题意可知,第n条抛物线的顶点为An(﹣n,2n),则Dn(﹣3n,2n),
∵以An为顶点的抛物线不可能经过点Dn,设第n+k(k为正整数)条抛物线经过点Dn,此时第n+k条抛物线的顶点坐标是An+k(﹣n﹣k,2n+2k),
∴﹣=﹣n﹣k,∴a==﹣,
∴第n+k条抛物线的表达式为y=﹣x2﹣4x,
∵Dn(﹣3n,2n)在第n+k条抛物线上,
∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,
∵n,k为正整数,且n≤12,
∴n1=5,n2=10.
当n=5时,k=4,n+k=9;
当n=10时,k=8,n+k=18>12(舍去),
∴D5(﹣15,10),
∴正方形的边长是10.
7.(2017•毕节市)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
【解答】解:
(1)设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得,解得,
∴抛物线解析式为y=x2﹣3x﹣4;
(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,
∴PO=PD,此时P点即为满足条件的点,
∵C(0,﹣4),
∴D(0,﹣2),
∴P点纵坐标为﹣2,
代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
∴存在满足条件的P点,其坐标为(,﹣2);
(3)∵点P在抛物线上,
∴可设P(t,t2﹣3t﹣4),
过P作PE⊥x轴于点E,交直线BC于点F,如图2,
∵B(4,0),C(0,﹣4),
∴直线BC解析式为y=x﹣4,
∴F(t,t﹣4),
∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,
∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,
∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
8.(2017•西宁)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
【解答】解:
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,
∴抛物线解析式为y=﹣(x﹣2)2+3,即y=﹣x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形;
(3)存在.理由如下:
设直线BE解析式为y=kx+b,
把B、E坐标代入可得,解得,
∴直线BE解析式为y=x+1,
当x=2时,y=2,
∴F(2,2),
①
当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,
∴点M的纵坐标为2或﹣2,
在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x=,
∴M点坐标为(,2);
在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x=,
∴M点坐标为(,﹣2);
②当AF为平行四边形的对角线时,
∵A(4,0),F(2,2),
∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
设M(t,﹣t2+3t),N(x,0),
则﹣t2+3t=2,解得t=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴t=,
∴M点坐标为(,2);
综上可知存在满足条件的点M,其坐标为(,2)或(,﹣2).
9.(2017•盐城)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC上方抛物线上一动点;
①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;
②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.
【解答】解:(1)根据题意得A(﹣4,0),C(0,2),
∵抛物线y=﹣x2+bx+c经过A、C两点,
∴,
∴,
∴y=﹣x2﹣x+2;
(2)①如图,令y=0,
∴﹣x2﹣x+2=0,
∴x1=﹣4,x2=1,
∴B(1,0),
过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交于AC于N,
∴DM∥BN,
∴△DME∽△BNE,
∴==,
设D(a,﹣a2﹣a+2),
∴M(a,a+2),
∵B(1,0),
∴N(1,),
∴==(a+2)2+;
∴当a=﹣2时,的最大值是;
②∵A(﹣4,0),B(1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,
∴P(﹣,0),
∴PA=PC=PB=,
∴∠CPO=2∠BAC,
∴tan∠CPO=tan(2∠BAC)=,
过D作x轴的平行线交y轴于R,交AC的延长线于G,
情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,
∴∠CDG=∠BAC,
∴tan∠CDG=tan∠BAC=,
即,
令D(a,﹣a2﹣a+2),
∴DR=﹣a,RC=﹣a2﹣a,
∴,
∴a1=0(舍去),a2=﹣2,
∴xD=﹣2,
情况二,∴∠FDC=2∠BAC,
∴tan∠FDC=,
设FC=4k,
∴DF=3k,DC=5k,
∵tan∠DGC==,
∴FG=6k,
∴CG=2k,DG=3k,
∴RC=k,RG=k,
DR=3k﹣k=k,
∴==,
∴a1=0(舍去),a2=﹣,
点D的横坐标为﹣2或﹣.
10.(2017•株洲)已知二次函数y=﹣x2+bx+c+1,
①当b=1时,求这个二次函数的对称轴的方程;
②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?
③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.
【解答】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,
当b=1时,=,
∴当b=1时,求这个二次函数的对称轴的方程为x=.
②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),
∵二次函数的图象与x轴相切且c=﹣b2﹣2b,
∴,解得:b=,
∴b为,二次函数的图象与x轴相切.
③∵AB是半圆的直径,
∴∠AMB=90°,
∴∠OAM+∠OBM=90°,
∵∠AOM=∠MOB=90°,
∴∠OAM+∠OMA=90°,
∴∠OMA=∠OBM,
∴△OAM∽△OMB,
∴,
∴OM2=OA•OB,
∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),
∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),
∵OM=c+1,
∴(c+1)2=c+1,
解得:c=0或c=﹣1(舍去),
∴c=0,OM=1,
∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,
∴AD=BD,DF=4DE,
DF∥OM,
∴△BDE∽△BOM,△AOM∽△ADF,
∴,,
∴DE=,DF=,
∴×4,
∴OB=4OA,即x2=﹣4x1,
∵x1•x2=﹣(c+1)=﹣1,
∴,解得:,
∴b=﹣+2=,
∴二次函数的表达式为y=﹣x2+x+1.
11.(2017•枣庄)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.
【解答】解:
(1)把B、C两点坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=﹣x2+2x+6,
∵y=﹣x2+2x+6=﹣(x﹣2)2+8,
∴D(2,8);
(2)如图1,过F作FG⊥x轴于点G,
设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,
∴△FBG∽△BDE,
∴=,
∵B(6,0),D(2,8),
∴E(2,0),BE=4,DE=8,OB=6,
∴BG=6﹣x,
∴=,
当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);
当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,﹣);
综上可知F点的坐标为(﹣1,)或(﹣3,﹣);
(3)如图2,设对角线MN、PQ交于点O′,
∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,
∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,
设Q(2,2n),则M坐标为(2﹣n,n),
∵点M在抛物线y=﹣x2+2x+6的图象上,
∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,
∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).
12.(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△
PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
【解答】解:
(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),
∴,解得,
∴该抛物线对应的函数解析式为y=x2﹣x+3;
(2)①∵点P是抛物线上的动点且位于x轴下方,
∴可设P(t,t2﹣t+3)(1<t<5),
∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,
∴M(t,0),N(t,t+3),
∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+
联立直线CD与抛物线解析式可得,解得或,
∴C(0,3),D(7,),
分别过C、D作直线PN的直线,垂足分别为E、F,如图1,
则CE=t,DF=7﹣t,
∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,
∴当t=时,△PCD的面积有最大值,最大值为;
②存在.
∵∠CQN=∠PMB=90°,
∴当△CNQ与△PBM相似时,有或=两种情况,
∵CQ⊥PM,垂足为Q,
∴Q(t,3),且C(0,3),N(t,t+3),
∴CQ=t,NQ=t+3﹣3=t,
∴=,
∵P(t,t2﹣t+3),M(t,0),B(5,0),
∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,
当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);
当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);
综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).
13.(2017•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
【解答】解:(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1.
∴A(﹣2,0),
把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a≠0),得
,
解得 ,
所以该抛物线的解析式为:y=﹣x2+x+3;
(2)设运动时间为t秒,则AM=3t,BN=t.
∴MB=6﹣3t.
由题意得,点C的坐标为(0,3).
在Rt△BOC中,BC==5.
如图1,过点N作NH⊥AB于点H.
∴NH∥CO,
∴△BHN∽△BOC,
∴,即=,
∴HN=t.
∴S△MBN=MB•HN=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+,
当△PBQ存在时,0<t<2,
∴当t=1时,
S△PBQ最大=.
答:运动1秒使△PBQ的面积最大,最大面积是;
(3)如图2,
在Rt△OBC中,cos∠B==.
设运动时间为t秒,则AM=3t,BN=t.
∴MB=6﹣3t.
当∠MNB=90°时,cos∠B==,即=,
化简,得17t=24,解得t=,
当∠BMN=90°时,cos∠B==,
化简,得19t=30,解得t=,
综上所述:t=或t=时,△MBN为直角三角形.
14.(2017•广元)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
【解答】解:(1)将A,B,C点的坐标代入解析式,得
,
解得,
抛物线的解析式为y=﹣x2﹣2x+3
(2)配方,得y=﹣(x+1)2+4,顶点D的坐标为(﹣1,4)
作B点关于直线x=1的对称点B′,如图1,
则B′(4,3),由(1)得D(﹣1,4),
可求出直线DB′的函数关系式为y=﹣x+,
当M(1,m)在直线DN′上时,MN+MD的值最小,
则m=﹣×1+=.
(3)作PE⊥x轴交AC于E点,如图2,
AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),E(m,m+3),
PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m
S△APC=PE•|xA|=(﹣m2﹣3m)×3=﹣(m+)2+,
当m=﹣时,△APC的面积的最大值是;
(4)由(1)、(2)得D(﹣1,4),N(﹣1,2)
点E在直线AC上,设E(x,x+3),
①当点E在线段AC上时,点F在点E上方,则F(x,﹣x2﹣2x+3),
∵EF=DN
∴﹣x2﹣2x+3﹣(x+3)=4﹣2=2,
解得,x=﹣2或x=﹣1(舍去),
则点E的坐标为:(﹣2,1).
②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,﹣x2﹣2x+3),
∵EF=DN,
∴(x+3)﹣(﹣x2﹣2x+3)=2,
解得x=或x=,
即点E的坐标为:(,)或(,)
综上可得满足条件的点E为E(﹣2,1)或:(,)或(,).
15.(2017•泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.
【解答】解:
(1)由题意可得,解得,
∴抛物线解析式为y=﹣x2+x+2;
(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,
∵A、B关于对称轴对称,C、D关于对称轴对称,
∴四边形ABDC为等腰梯形,
∴∠CAO=∠DBA,即点D满足条件,
∴D(3,2);
当点D在x轴下方时,
∵∠DBA=∠CAO,
∴BD∥AC,
∵C(0,2),
∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,
∴直线AC解析式为y=2x+2,
∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,
∴直线BD解析式为y=2x﹣8,
联立直线BD和抛物线解析式可得,解得或,
∴D(﹣5,﹣18);
综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);
(3)过点P作PH∥y轴交直线BC于点H,如图2,
设P(t,﹣t2+t+2),
由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,
∴H(t,﹣t+2),
∴PH=yP﹣yH=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,
设直线AP的解析式为y=px+q,
∴,解得,
∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,
∴F(0,2﹣t),
∴CF=2﹣(2﹣t)=t,
联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,
∴S1=PH(xB﹣xE)=(﹣t2+2t)(4﹣),S2=••,
∴S1﹣S2=(﹣t2+2t)(4﹣)﹣••=﹣t2+4t=﹣(t﹣)2+,
∴当t=时,有S1﹣S2有最大值,最大值为.
16.(2017•锦州)如图,抛物线y=x2+bx+
c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
【解答】解:(1)把B(﹣1,0),D(﹣2,5)代入y=x2+bx+c,
得,解得,
∴抛物线的解析式为:y=x2﹣2x﹣3;
(2)存在点P,使∠APB=90°.
当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,
∴OB=1,OA=3.
设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,
∵∠APB=90°,PH⊥AB,
∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,
∴△AHP∽△PHB,
∴=,
∴PH2=BH•AH,
∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),
解得m1=1+,m2=1﹣,
∴点P的横坐标为:1+或1﹣;
(3)如图,过点D作DN⊥x轴于点N,则DN=5,ON=2,AN=3+2=5,
∴tan∠DAB===1,
∴∠DAB=45°.
过点D作DK∥x轴,则∠KDQ=∠DAB=45°,DQ=QG.
由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+DQ,
∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.
由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.
过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.
∵A(3,0),D(﹣2,5),
∴直线AD的解析式为:y=﹣x+3,
∵B点横坐标为﹣1,
∴y=1+3=4,
∴Q(﹣1,4).
17.(2017•乐山)如图1,抛物线C1:y=x2+ax与C2:y=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.
(1)求 的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.
【解答】解:
(1)在y=x2+ax中,当y=0时,x2+ax=0,x1=0,x2=﹣a,
∴B(﹣a,0),
在y=﹣x2+bx中,当y=0时,﹣x2+bx=0,x1=0,x2=b,
∴A(0,b),
∵B为OA的中点,
∴b=﹣2a,
∴;
(2)联立两抛物线解析式可得,消去y整理可得2x2+3ax=0,解得x1=0,,
当时,,
∴,
过C作CD⊥x轴于点D,如图1,
∴,
∵∠OCA=90°,
∴△OCD∽△CAD,
∴,
∴CD2=AD•OD,即,
∴a1=0(舍去),(舍去),,
∴,,
∴;
(3)①抛物线,
∴其对称轴,
点A关于l2的对称点为O(0,0),,
则P为直线OC与l2的交点,
设OC的解析式为y=kx,
∴,得,
∴OC的解析式为,
当时,,
∴;
②设,
则,
而,,
设直线BC的解析式为y=kx+b,
由,解得,
∴直线BC的解析式为,
过点E作x轴的平行线交直线BC于点N,如图2,
则,即x=,
∴EN=,
∴
∴S四边形OBCE=S△OBE+S△EBC==,
∵,
∴当时,,
当时,,
∴,.
18.(2017•黔南州)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.
(1)求过A、B、D三点的抛物线的解析式;
(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;
(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
【解答】解:(1)∵A(8,0),D(﹣1,0),
设过A、B、D三点的抛物线的解析式为y=a(x+1)(x﹣8),将B(0,4)代入得﹣8a=4,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+1)(x﹣8)=﹣x2+x+4;
(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,
∴C(0,﹣4).
由A(8,0)、B(0,4),得:直线AB:y=﹣x+4;
依题意,知:OE=2t,即 E(2t,0);
∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;
S=S△ABC+S△PAB=×8×8+×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;
∴当t=2时,S有最大值,且最大值为64;
(3)存在,
∵抛物线的对称轴为:x==,
∴设H(,m),
∵A(8,0),B(0,4),
∴AH2=(8﹣)2+m2=+m2,AB2=82+42=80,BH2=()2+(4﹣m)2=m2﹣8m+①当∠ABH=90°时,AH2=BH2+AB2,即+m2=m2﹣8m++80,
解得:m=11,
∴H(,11),
②当∠AHB=90°时,AH2+BH2=AB2,+m2+m2﹣8m+=80,
解得:m=2±,
∴H(,2+),(,2﹣),
③当∠BAH=90°时,AB2+AH2=HB2,即80++m2=m2﹣8m+,
解得:m=﹣9,
∴H(,﹣9),
综上所述,H(,11)或(,2+)或(,2﹣)或(,﹣9).
19.(2017•怀化)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,
∴,
∴,
∴抛物线的表达式为y=x2﹣4x﹣5,
(2)如图1,令x=0,则y=﹣5,
∴C(0,﹣5),
∴OC=OB,
∴∠OBC=∠OCB=45°,
∴AB=6,BC=5,
要使以B,C,D为顶点的三角形与△ABC相似,则有或,
①当时,
CD=AB=6,
∴D(0,1),
②当时,
∴,
∴CD=,
∴D(0,),
即:D的坐标为(0,1)或(0,);
(3)设H(t,t2﹣4t﹣5),
∵CE∥x轴,
∴点E的纵坐标为﹣5,
∵E在抛物线上,
∴x2﹣4x﹣5=﹣5,
∴x=0(舍)或x=4,
∴E(4,﹣5),
∴CE=4,
∵B(5,0),C(0,﹣5),
∴直线BC的解析式为y=x﹣5,
∴F(t,t﹣5),
∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,
∵CE∥x轴,HF∥y轴,
∴CE⊥HF,
∴S四边形CHEF=CE•HF=﹣2(t﹣)2+,
当t=时,四边形CHEF的面积最大为.
当t=时,t2﹣4t﹣5=﹣10﹣5=﹣,
∴H(,﹣);
(4)如图2,∵K为抛物线的顶点,
∴K(2,﹣9),
∴K关于y轴的对称点K'(﹣2,﹣9),
∵M(4,m)在抛物线上,
∴M(4,﹣5),
∴点M关于x轴的对称点M'(4,5),
∴直线K'M'的解析式为y=x﹣,
∴P(,0),Q(0,﹣).
20.(2017•绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.
【解答】解:
(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),
∴可设抛物线解析式为y=a(x﹣2)2+1,
∵抛物线经过点(4,2),
∴2=a(4﹣2)2+1,解得a=,
∴抛物线解析式为y=(x﹣2)2+1=x2﹣x+2;
(2)联立直线和抛物线解析式可得,解得或,
∴B(3﹣,﹣),D(3+,+),
∵C为BD的中点,
∴点C的纵坐标为=,
∵BD==5,
∴圆的半径为,
∴点C到x轴的距离等于圆的半径,
∴圆C与x轴相切;
(3)如图,过点C作CH⊥m,垂足为H,连接CM,
由(2)可知CM=,CH=﹣1=,
在Rt△CMH中,由勾股定理可求得MH=2,
∵HF==,
∴MF=HF﹣MH=﹣2,
∵BE=﹣﹣1=﹣,
∴==.
21.(2017•辽阳)如图1,抛物线y=x2+bx+c经过A(﹣2,0)、B(0,﹣2)两点,点C在y轴上,△ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t>0),过点D作DE⊥AC于点E,以DE为边作矩形DEGF,使点F在x轴上,点G在AC或AC的延长线上.
(1)求抛物线的解析式;
(2)将矩形DEGF沿GF所在直线翻折,得矩形D'E'GF,当点D的对称点D'落在抛物线上时,求此时点D'的坐标;
(3)如图2,在x轴上有一点M(2
,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围.
【解答】解:(1)把A(﹣2,0)、B(0,﹣2)代入抛物线的解析式得:,解得:,
∴抛物线的解析式为y=x2+x﹣2.
(2)A(﹣2,0)、B(0,﹣2),
∴OA=2,OB=2.
∵AD=2t,∠DEA=90°,∠BAC=60°,
∴AE=t,DE=t.
∵△ABC为等边三角形,
∴∠BAC=60°.
∵AO⊥BC,
∴∠CAO=∠BAO=30°.
∵四边形DEGF为矩形,
∴DF∥AC,GF=DE=t.
∴∠DFA=∠CAO=30°,
∴AF=2GF=2t.
∴∠DFA=∠BAO=30°.
∴DF=AD=2t.
过点D′作D′H⊥x轴与点H.
∵∠D′FH=∠AFD=30°,
∴D′H=D′F=t,FH=D′H=t.
∴AH=AF+FH=3t.
∴OH=AH﹣AO=3t﹣2.
∴D′(3t﹣2,t).
把点D′(3t﹣2,t)代入y=x2+x﹣2得:t=(3t﹣2)2+(3t﹣2)﹣2.整理得:9t2﹣10t=0,
解得t=或t=0(舍去).
∴D′(,).
(3)由(2)可知:DE=t,DF=2t,AE=t.
如图2所示:当AE+EG≤AC时,即t+2t≤4,解得:t≤.
∴当0<t≤时,S=ED•DF=2t2.
当<t≤2时,如图3所示:
∵CG=AG﹣AC,
∴CG=3t﹣4,
∴GN=3t﹣4.
∴S=ED•DF﹣CG•GN=2t2﹣(3t﹣4)×(3t﹣4)=﹣t2+12t﹣8.
综上所述,S与t的函数关系式为S=.
22.(2017•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.
(1)求抛物线的解析式;
(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),
∴AC=5.
∵△ABC为等腰直角三角形,∠C=90°,
∴BC=AC=5.
∴B(﹣4,﹣5).
将点A和点B的坐标代入得:,解得:,
∴抛物线的解析式为y=﹣x2﹣2x+3.
(2)如图1所示:
设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.
所以直线AB的解析式为y=x﹣1.
设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).
∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.
∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).
(3)存在点P,能使△PEF是以EF为直角边的直角三角形.
理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.
由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,
∴点E(﹣,﹣)、F(﹣,).
①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).
∴点P的坐标为(﹣,).
②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.
∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).
综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).
23.(2017•达州)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.
(1)①直接回答:△OBC与△ABD全等吗?
②试说明:无论点C如何移动,AD始终与OB平行;
(2)当点C运动到使AC2=AE•AD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.
【解答】解:(1)①△OBC与△ABD全等,
理由是:如图1,∵△OAB和△BCD是等边三角形,
∴∠OBA=∠CBD=60°,
OB=AB,BC=BD,
∴∠OBA+∠ABC=∠CBD+∠ABC,
即∠OBC=∠ABD,
∴△OBC≌△ABD(SAS);
②∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∴∠OBA=∠BAD,
∴OB∥AD,
∴无论点C如何移动,AD始终与OB平行;
(2)如图2,∵AC2=AE•AD,
∴,
∵∠EAC=∠DAC,
∴△AEC∽△ACD,
∴∠ECA=∠ADC,
∵∠BAD=∠BAO=60°,
∴∠DAC=60°,
∵∠BED=∠AEC,
∴∠ACB=∠ADB,
∴∠ADB=∠ADC,
∵BD=CD,
∴DE⊥BC,
Rt△ABE中,∠BAE=60°,
∴∠ABE=30°,
∴AE=AB=×2=1,
Rt△AEC中,∠EAC=60°,
∴∠ECA=30°,
∴AC=2AE=2,
∴C(4,0),
等边△OAB中,过B作BH⊥x轴于H,
∴BH==,
∴B(1,),
设y1的解析式为:y=ax(x﹣4),
把B(1,)代入得:=a(1﹣4),
a=﹣,
∴设y1的解析式为:y1=﹣x(x﹣4)=﹣x2+x,
过E作EG⊥x轴于G,
Rt△AGE中,AE=1,
∴AG=AE=,
EG==,
∴E(,),
设直线AE的解析式为:y=kx+b,
把A(2,0)和E(,)代入得:,
解得:,
∴直线AE的解析式为:y=x﹣2,
则,
解得:,,
∴P(3,)或(﹣2,﹣4);
由(2)知:OB∥AD,
∴∠OBE=∠AEC=90°,
∴△OBE是直角三角形,
∴P在点O处时,也符合条件,
综上所述,点P的坐标为:(3,)或(﹣2,﹣4)或(0,0);
(3)如图3,
y1=﹣x2+x=﹣(x﹣2)2+,
顶点(2,),
∴抛物线y2的顶点为(2,﹣),
∴y2=(x﹣2)2﹣,
∵直线y=x+m和组成图形M的抛物线y1有两个交点或一个交点或没有交点,
抛物线y2有两个交点或一个交点或没有交点,
要图象M和直线y=x+m只有3个交点,则直线y=x+m和y1或y2相切,
当y2与l相切时,直线l与y2只有一个公共点,即:l与图形M有3个公共点,
则,
=﹣,
x2﹣7x﹣3m=0,
△=(﹣7)2﹣4×1×(﹣3m)=0,
m=﹣,
当y1与l相切时,直线l与y1只有一个公共点,l与图形M有3个公共点,
∴,
∴x2﹣x+3m=0,
∴△=1﹣12m=0,
∴m=,
当直线经过(0,0)或(4,0)时,也符合题意,此时m=0或﹣4
∴当l与M的公共点为3个时,m的取值是:m=﹣或m=或0或﹣4.
24.(2017•葫芦岛)如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.
(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
【解答】解:(1)将点A、点C的坐标代入抛物线的解析式得:,
解得:a=1,c=﹣8.
∴抛物线的解析式为y=x2﹣2x﹣8.
∵y=(x﹣1)2﹣9,
∴D(1,﹣9).
(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,
∴B(4,0).
∵y=(x﹣1)2﹣9,
∴抛物线的对称轴为x=1,
∴E(1,0).
∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,
∴EP为∠BEF的角平分线.
∴∠BEP=45°.
设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,
∴直线EP的解析式为y=﹣x+1.
将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x=或x=.
∵点P在第四象限,
∴x=.
∴y=.
∴P(,).
(3)设CD的解析式为y=kx﹣8,将点D的坐标代入得:k﹣8=﹣9,解得k=﹣1,
∴直线CD的解析式为y=﹣x﹣8.
设直线CB的解析式为y=k2x﹣8,将点B的坐标代入得:4k2﹣8=0,解得:k2=2.
∴直线BC的解析式为y=2x﹣8.
将x=1代入直线BC的解析式得:y=﹣6,
∴F(1,﹣6).
设点M的坐标为(a,﹣a﹣8).
当MF=MB时,(a﹣4)2+(a+8)2=(a﹣1)2+(a+2)2,整理得:6a=﹣75,解得:a=﹣.
∴点M的坐标为(﹣,).
当FM=FB时,(a﹣1)2+(a+2)2=(4﹣1)2+(﹣6﹣0)2,整理得:a2+a﹣20=0,解得:a=4或a=﹣5.
∴点M的坐标为(4,﹣12)或(﹣5,﹣3).
综上所述,点M的坐标为(﹣,)或(4,﹣12)或(﹣5,﹣3).
25.(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.
【解答】解:(1)当m=﹣3时,B(﹣3,0),
把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:
,解得,
∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;
对称轴是:直线x=﹣1;
(2)如图1,设E(m,m2+2m﹣3),
由题意得:AD=1+1=2,OC=3,
S△ACE=S△ACD=×AD•OC=×2×3=10,
设直线AE的解析式为:y=kx+b,
把A(1,0)和E(m,m2+2m﹣3)代入得,
,
解得:,
∴直线AE的解析式为:y=(m+3)x﹣m﹣3,
∴F(0,﹣m﹣3),
∵C(0,﹣3),
∴FC=﹣m﹣3+3=﹣m,
∴S△ACE=FC•(1﹣m)=10,
﹣m(1﹣m)=20,
m2﹣m﹣20=0,
(m+4)(m﹣5)=0,
m1=﹣4,m2=5(舍),
∴E(﹣4,5);
(3)设点P(0,y).
①当m<0时,
如图2,△POB∽△FGP
得=
∴m=y2+4y=(y+2)2﹣4
∵﹣4<y<0,
∴﹣4≤m<0.
②当m>0时,
如图3,△POB∽△FGP
∴=
∴=
∴m=﹣y2﹣4y=﹣(y+2)2+4
∴﹣4<y<0
∴0<m≤4
综上所述,m的取值范围是﹣4≤m≤4且m≠0.
26.(2017•黔东南州)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).
(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.
【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.
∴抛物线的解析式为y=﹣x2﹣x+.
(2)连接AM,过点M作MG⊥AD,垂足为G.
把x=0代入y=﹣x+4得:y=4,
∴A(0,4).
将y=0代入得:0=﹣x+4,解得x=8,
∴B(8,0).
∴OA=4,OB=8.
∵M(﹣1,2),A(0,4),
∴MG=1,AG=2.
∴tan∠MAG=tan∠ABO=.
∴∠MAG=∠ABO.
∵∠OAB+∠ABO=90°,
∴∠MAG+∠OAB=90°,即∠MAB=90°.
∴l是⊙M的切线.
(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,
∴∠FPE=∠FBD.
∴tan∠FPE=.
∴PF:PE:EF=:2:1.
∴△PEF的面积=PE•EF=×PF•PF=PF2.
∴当PF最小时,△PEF的面积最小.
设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).
∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.
∴当x=时,PF有最小值,PF的最小值为.
∴P(,).
∴△PEF的面积的最小值为=×()2=.
27.(2017•抚顺)如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点E从点A出发,以每秒个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角△EFG.
(1)求抛物线的解析式;
(2)当点G落在第一象限内的抛物线上时,求出t的值;
(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经
过的路径长.
【解答】解:(1)将B(4,4)和C(6,0)代入抛物线y=ax2+bx+4得:
,
解得:,
∴抛物线的解析式为:y=﹣x2+x+4;
(2)如图1,由题意得:AE=t,
∵A(0,4),B(4,4),
∴AB⊥y轴,且AB∥x轴,
∵OA=OD=4,
∴△AOD是等腰直角三角形,
∴∠ADO=∠BAD=45°,
∴△AFE是等腰直角三角形,
∴AF=EF=t,
∵△EFG是等腰直角三角形,
∴G(t+t,4﹣t),
即:点G(,4﹣t),
将点G(,4﹣t)代入到抛物线得:
4﹣t=﹣()2++4,
解得:t1=0(舍),t2=,
答:当t=时,点G落在抛物线上;
(3)如图2,连接BD,当G在BD上时,
=4,
t=,
①当0≤t≤时,如图3,
过G作GH⊥x轴于H,延长HG交AB于M,则GM⊥AB,
∵B(4,4),D(4,0),
∴BD⊥x轴,
∴S△BCG=S梯形GHDB+S△BDC﹣S△GHC,
4=(4﹣+4)(4﹣)+×4×(6﹣4)﹣(6﹣)(4﹣t),
4=t,
解得:t=,
∴AM==×=,
GM=t=×=,
在Rt△AGM中,由勾股定理得:AG===;
∴当t=时,此时点G运动的路径长为;
②当G在BC上时,如图4,
tan∠C==2,
∴GH=2HC,
∴4﹣t=2(6﹣),
t=,
当<t≤时,如图5,
S△BCG=S△BDC﹣S梯形BDHG﹣S△GHC,
4=×4×2﹣(4﹣+4)(t﹣4)﹣×,
t=(不在此范围内,不符合题意),
③当E与D重合时,F与B重合,如图6,
t==4,
∴G(6,2),
∴AG==2,
∴S△BCG=S梯形BDCG﹣S△BDC=×2×(4+2)﹣×2×4=2,
∴当t>4时,如图7,
由题意得:DE=t﹣4,
∴OE=t﹣4+4=t,
∴OH=OE+EH=t+2,
EH=2,GM=GH=2,
BM=t+2﹣4=t﹣2,
CH=t+2﹣6=t﹣4,
过G作MH⊥x轴,交x轴于H,交直线AB于M,
∴S△BGC=S梯形BCHM﹣S△BGM﹣S△GCH,
4=(t﹣4+t﹣2)×4﹣×2×(t﹣2)﹣×2×(t﹣4),
t=5,
当t=5时,点G的运动路径分为两部分组成:
i)点G从A运动到D时,运动路径为:如图6中的AG长,即为2;
ii)点G从D点继续在射线DC上运动1秒时,路径为1;
所以当t=5时,此时点G运动的路径长度为1+2.
综上所述:当t1=秒,此时路径长度为,
当t2=5秒,此时路径长度为1+2.
28.(2017•莱芜)抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.
(1)求抛物线的表达式;
(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足=
,求点D的坐标;
(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.
【解答】解:(1)根据题意,设抛物线表达式为y=a(x﹣3)2+h.
把B(4,3),C(6,﹣5)代入得:,
解得:,
故抛物线的表达式为:y=﹣(x﹣3)2+4=﹣x2+6x﹣5;
(2)设直线AC的表达式为y=kx+n,
则:,
解得:k=﹣2,n=7,
∴直线AC的表达式为y=﹣2x+7,
设点D(m,﹣m+6m﹣5),2<m<6,则点E(m,﹣2m+7),
∴DE=(﹣m2+6m﹣5)﹣(﹣2m+7)=﹣m2+8m﹣12,
设直线DE与直线AB交于点G,
∵AG⊥EG,
∴AG=m﹣2,EG=3﹣(﹣2m+7)=2(m﹣2),
m﹣2>0,
在Rt△AEG中,
∴AE=(m﹣2),
由,得=,
化简得,2m2﹣11m+14=0,
解得:m1=,m2=2(舍去),
则D(,).
(3)根据题意得:△ABF为等腰直角三角形,假设存在满足条件的点P、Q,则△BPQ为等腰直角三角形,
分三种情况:
①若∠BPQ=90°,BP=PQ,
如图2,过P作MN∥x轴,过Q作QM⊥MN于M,过B作BN⊥MN于N,
易证得:△BAP≌△QMP,
∴AB=QM=2,PM=AP=3+2=5,
∴P(2,﹣2),Q(﹣3,0),
在Rt△QMP中,PM=5,QM=2,
由勾股定理得:PQ==,
∴S△BPQ=PQ•PB=;
如图3,易证得:△BAP≌△PMQ,
∴AB=PM=2,AP=MQ=3﹣2=1,
∴P(2,2),Q(3,0),
在Rt△QMP中,PM=2,QM=1,
由勾股定理得:PQ=,
∴S△BPQ=PQ•PB=;
②若∠BQP=90°,BQ=PQ,
如图4,易得:△BNQ≌△QMP,
∴NQ=PM=3,NG=PM﹣AG=3﹣2=1,
∴BN=MQ=4+1=5,
∴P(2,﹣5),Q(﹣1,0)
∴PQ==,
∴S△BPQ=PQ•PB==17;
如图5,易得△QNB≌△PMQ,
∴NQ=PM=3,
∴P(2,﹣1),Q(5,0),
∴PQ=,
∴S△BPQ=PQ•PB==5,
③若∠PBQ=90°,BQ=BP,如图6,
过Q作QN⊥AB,交AB的延长线于N,
易得:△PAB≌△BNQ,
∵AB=2,NQ=3,AB≠NQ
∴此时不存在符合条件的P、Q.
29.(2017•郴州)如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.
(1)试求该抛物线表达式;
(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;
(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.
①求证:△ACD是直角三角形;
②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?
【解答】解:(1)由题意得:,解得:,
∴抛物线的表达式为y=x2+x﹣4.
(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4).
∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣m.
∵PE⊥x轴,
∴PF∥OC.
∴PF=OC时,四边形PCOF是平行四边形.
∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.
当m=﹣时,m2+m﹣4=﹣,
当m=﹣8时,m2+m﹣4=﹣4.
∴点P的坐标为(﹣,﹣)或(﹣8,﹣4).
(3)①证明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.
∴D(﹣8,0).
∴OD=8.
∵A(2,0),C(0,﹣4),
∴AD=2﹣(﹣8)=10.
由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,
∴AC2+CD2=AD2.
∴△ACD是直角三角形,且∠ACD=90°.
②由①得∠ACD=90°.
当△ACD∽△CHP时,=,即=或=,
解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.
当△ACD∽△PHC时,=,即=或即=.
解得:n=0(舍去)或n=2或n=﹣18.
综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.
30.(2017•南宁)如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.
【解答】解:(1)∵C(0,3).
∴﹣9a=3,解得:a=﹣.
令y=0得:ax2﹣2 x﹣9a=0,
∵a≠0,
∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.
∴点A的坐标为(﹣,0),B(3,0).
∴抛物线的对称轴为x=.
(2)∵OA=,OC=3,
∴tan∠CAO=,
∴∠CAO=60°.
∵AE为∠BAC的平分线,
∴∠DAO=30°.
∴DO=AO=1.
∴点D的坐标为(0,1)
设点P的坐标为(,a).
依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.
当AD=PA时,4=12+a2,方程无解.
当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),
∴点P的坐标为(,0).
当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.
∴点P的坐标为(,﹣4).
综上所述,点P的坐标为(,0)或(,﹣4).
(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,
∴直线AC的解析式为y=x+3.
设直线MN的解析式为y=kx+1.
把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,
∴点N的坐标为(﹣,0).
∴AN=﹣+=.
将y=x+3与y=kx+1联立解得:x=.
∴点M的横坐标为.
过点M作MG⊥x轴,垂足为G.则AG=+.
∵∠MAG=60°,∠AGM=90°,
∴AM=2AG=+2=.
∴+=+=+===.
31.(2017•吉林)《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .
【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.
【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.
【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.
【解答】解:【问题】
∵抛物线y=a(x﹣2)2﹣经过原点O,
∴0=a(0﹣2)2﹣,
a=,
故答案为:;
【操作】:如图①,抛物线:y=(x﹣2)2﹣,
对称轴是:直线x=2,由对称性得:A(4,0),
沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+
如图②,图象G对应的函数解析式为:y=;
【探究】:如图③,由题意得:
当y=1时,(x﹣2)2﹣=1,
解得:x1=2+,x2=2﹣,
∴C(2﹣,1),F(2+,1),
当y=1时,﹣(x﹣2)2+=1,
解得:x1=3,x2=1,
∴D(1,1),E(3,1),
由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;
【应用】:∵D(1,1),E(3,1),
∴DE=3﹣1=2,
∵S△PDE=DE•h≥1,
∴h≥1;
①当P在C的左侧或F的右侧部分时,设P[m,],
∴h=(m﹣2)2﹣﹣1≥1,
(m﹣2)2≥10,
m﹣2≥或m﹣2≤﹣,
m≥2+或m≤2﹣,
②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,
∵H(2,),
∴HM=﹣1=<1,
∴点P不可能在DE的上方;
③∵MN=1,
且O(0,0),A(4,0),
∴P不可能在CO(除O点)、OD、EA(除A点)、AF上,
∴P与O或A重合时,符合条件,
∴m=0或m=4;
综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.
32.(2017•镇江)如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t>0),二次函数y=x2+bx(b<0)的图象经过点B,顶点为点D.
(1)当t=12时,顶点D到x轴的距离等于 ;
(2)点E是二次函数y=x2+bx(b<0)的图象与x轴的一个公共点(点E与点O不重合),求OE•EA的最大值及取得最大值时的二次函数表达式;
(3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数y=x2+bx(b<0)的图象于点M、N,连接DM、DN,当△DMN≌△FOC时,求t的值.
【解答】解:(1)当t=12时,B(4,12).
将点B的坐标代入抛物线的解析式得:16+4b=12,解得:b=﹣1,
∴抛物线的解析式y=x2﹣x.
∴y=(x﹣)2﹣.
∴D(,).
∴顶点D与x轴的距离为.
故答案为:.
(2)将y=0代入抛物线的解析式得:x2+bx=0,解得x=0或x=﹣b,
∵OA=4,
∴AE=4﹣(﹣b)=4+b.
∴OE•AE=﹣b(4+b)=﹣b2﹣4b=﹣(b+2)2+4,
∴OE•AE的最大值为4,此时b的值为﹣2,
∴抛物线的表达式为y=x2﹣2x.
(3)过D作DG⊥MN,垂足为G,过点F作FH⊥CO,垂足为H.
∵△DMN≌△FOC,
∴MN=CO=t,DG=FH=2.
∵D(﹣,﹣),
∴N(﹣+,﹣+2),即(,).
把点N和坐标代入抛物线的解析式得:=()2+b•(),
解得:t=±2.
∵t>0,
∴t=2.
33.(2017•绥化)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).
(1)求抛物线的解析式;
(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥
y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.
(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.
【解答】解:(1)∵直线y=﹣x+1交y轴于点B,
∴B(0,1),
∵抛物线y=﹣x2+bx+c经过点B和点C(4,﹣2).
∴,
解得:,
∴抛物线的解析式为:y=﹣x2+x+1;
(2)如图1,∵直线y=﹣x+1交x轴于点A,
当y=0时,﹣x+1=0,
x=,
∴A(,0),
∴OA=,
在Rt△AOB中,
∵OB=1,
∴AB=,
∴sin∠ABO=,cos∠ABO==,
∵ME∥x轴,
∴∠DEM=∠ABO,
∵以ME为直径的圆交直线BC于另一点D,
∴∠EDM=90°,
∴DE=ME•cos∠DEM=ME,
DM=ME•sin∠DEM=ME,
当点E在x轴上时,E和A重合,则m=OA=,
当x=时,y=﹣×+×+1=;
∴ME=,
∴DE==,DM==,
∴△DEM的周长=DE+DM+ME=++=;
(3)由旋转可知:O1A1⊥x轴,O1B1⊥y轴,设点A1的横坐标为x,则点B1的横坐标为x+1,
∵O1A1⊥x轴,
∴点O1,A1不可能同时落在抛物线上,分以下两种情况:
①如图2,当点O1,B1同时落在抛物线上时,
点O1,B1的纵坐标相等,
∴﹣=﹣(x+1)2+(x+1)+1,
解得:x=,
此时点A1的坐标为(,),
②如图3,当点A1,B1同时落在抛物线上时,
点B1的纵坐标比点A1的纵坐标大,
﹣=﹣(x+1)2+(x+1)+1,
解得:x=﹣,
此时A1(﹣,),
综上所述,点A1(,)或(﹣,).
34.(2017•鄂州)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
【解答】解:(1)∵抛物线的对称轴是直线x=1,点A(3,0),
∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,
将A(3,0),B(﹣1,0)代入抛物线解析式中得:,
解得:,
∴抛物线解析式为y=﹣x2+2x+3;
当x=1时,y=4,
∴顶点D(1,4).
(2)当=0时,
∴点C的坐标为(0,3),
∴AC==3,CD==,AD==2,
∴AC2+CD2=AD2,
∴△ACD为直角三角形,∠ACD=90°.
∴AD为△ACD外接圆的直径,
∵点E在 轴C点的上方,且CE=.
∴E(0,)
∴AE==DE==,
∴DE2+AD2=AE2,
∴△AED为直角三角形,∠ADE=90°.
∴AD⊥DE,
又∵AD为△ACD外接圆的直径,
∴DE是△ACD外接圆的切线;
(3)设直线AC的解析式为y=kx+b,
根据题意得:,
解得:,∴直线AC的解析式为y=﹣x+3,
∵A(3,0),D(1,4),
∴线段AD的中点N的坐标为(2,2),
过点N作NP∥AC,交抛物线于点P,
设直线NP的解析式为y=﹣x+c,
则﹣2+c=2,解得:c=4,
∴直线NP的解析式为y=﹣x+4,
由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,
解得:x=或x=,
∴y=,或y=
∴P(,)或(,);
(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);
②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);
③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣);
综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣).
35.(2017•淮安)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)填空:b= ,c= 4 ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
【解答】解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4,
∴b=,c=4.
(2)在点P、Q运动过程中,△APQ不可能是直角三角形.
理由如下:连结QC.
∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,
∴当△APQ是直角三角形时,则∠APQ=90°.
将x=0代入抛物线的解析式得:y=4,
∴C(0,4).
∵AP=OQ=t,
∴PC=5﹣t,
∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,
∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5.
∵由题意可知:0≤t≤4,
∴t=4.5不和题意,即△APQ不可能是直角三角形.
(3)如图所示:
过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.
∵PG∥y轴,
∴△PAG∽△ACO,
∴==,即==,
∴PG=t,AG=t,
∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.
∵∠MPQ=90°,∠D=90°,
∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,
∴∠DMP=∠EPQ.
又∵∠D=∠E,PM=PQ,
∴△MDP≌PEQ,
∴PD=EQ=t,MD=PE=3+t,
∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,
∴M(﹣3﹣t,﹣3+t).
∵点M在x轴下方的抛物线上,
∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=.
∵0≤t≤4,
∴t=.
(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.
∵点H为PQ的中点,点R为OP的中点,
∴EH=QO=t,RH∥OQ.
∵A(﹣3,0),N(﹣,0),
∴点N为OA的中点.
又∵R为OP的中点,
∴NR=AP=t,
∴RH=NR,
∴∠RNH=∠RHN.
∵RH∥OQ,
∴∠RHN=∠HNO,
∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.
设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:,
解得:m=,n=4,
∴直线AC的表示为y=x+4.
同理可得直线BC的表达式为y=﹣x+4.
设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,
∴直线NR的表述表达式为y=x+2.
将直线NR和直线BC的表达式联立得:,解得:x=,y=,
∴Q′(,).
36.(2017•雨城区校级自主招生)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线
y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
【解答】解:(1)当y=0时,﹣x+3=0,解得x=3,则A点坐标为(3,0),
当x=0时,y=﹣x+3=3,则B点坐标为(0,3),
将A(3,0),B(0,3)代入y=﹣x2+bx+c得,解得,
∴抛物线的解析式为y=﹣x2+2x+3;
(2)OP=t,AQ=t,则PA=3﹣t,
∵OA=OB=3,∠BOA=90°,
∴∠QAP=45°.
当∠PQA=90°时,如图①,PA=AQ,即3﹣t=•t,解得t=1;
当∠APQ=90°时,如图②,AQ=AP,即t=•(3﹣t),解得t=;
综上所述,当t=1或t=时,△PQA是直角三角形;
(3)如图③,延长FQ交x轴于点H,设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),
易得△AQH为等腰直角三角形,
∴AH=HQ=AQ=•t=t,
∴点Q的坐标为(3﹣t,t),点F的坐标为[3﹣t,﹣(3﹣t)2+2(3﹣t)+3)],
∴FQ=﹣(3﹣t)2+2(3﹣t)+3)﹣t=﹣t2+3t,
∵EP∥FQ,EF∥PQ,
∴四边形PQFE为平行四边形,
∴EP=FQ.即3﹣t=3t﹣t2,解得t1=1,t2=3(舍去),
∴点F的坐标为(2,3);
(4)存在.
如图④所示:OP=t,AQ=t,则BQ=3﹣t,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴点M的坐标为(1,4),
∴MB==,
而AB=3,AM==2,
∴AB2+BM2=AM2,
∴△ABM为直角三角形,∠ABM=90°,
∵∠QBM=∠BOP,
∴当=时,△BOP∽△QBM时,即=,
整理得t2﹣3t+3=0,△=32﹣4×1×3<0,方程无实数解:
当=时,△BOP∽△MBQ,即=,解得t=,
综上所述,当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.
37.(2017•余姚市校级自主招生)如图,直线y=﹣x+3与x轴,y轴分别相交于点B,C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求该抛物线的函数表达式;
(2)请问在抛物线上是否存在点Q,使得以点B,C,Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)过S(0,4)的动直线l交抛物线于M,N两点,试问抛物线上是否存在定点T,使得不过定点T的任意直线l都有∠MTN=90°?若存在,请求出点T的坐标;若不存在,请说明理由.
【解答】解:(1)∵直线y=﹣x+3与x轴,y轴分别相交于点B,C,
∴B(3,0),C(0,3),
∵对称轴为直线x=2,
∴设该抛物线的函数表达式为y=a(x﹣1)(x﹣3),
把C(0,3)代入得3a=3,解得a=1,
∴该抛物线的函数表达式y=(x﹣1)(x﹣3)=x2﹣4x+3;
(2)存在,设过B点垂直BC的直线的解析式为y=x+b,
把B(3,0)代入得b=﹣3,
则直线的解析式为y=x﹣3,
依题意有,
解得,,
∴Q1(2,﹣1),
过C点垂直BC的直线解析式为y=x+3,
依题意有,
解得,,
∴Q2(5,8),
以BC为斜边,设β(a,a2﹣4a+3),则
a2+(a2﹣4a)2+(a﹣3)2+(a2﹣4a+3)2=18,
a3﹣8a2+20a﹣15=0,
(a﹣3)(a2﹣5a+5)=0,
解得a1=3,a2=,
∴Q3(,),Q4(,),
∴存在点Q,使得以点B,C,Q为顶点的三角形为直角三角形;
(3)设M(x1,y1),N(x2,y2),T(a,b),
过T作PQ∥x轴,过M,N作MP⊥PQ于P,NQ⊥PQ于Q,
则∠MTN=90°,
则△MPT∽△TQN,
∴=,
a(x1+x2)﹣a2﹣x1x2=y1y2﹣b(y1+y2)+b2,
其中x1,x2,y1,y2是的解,
∴x2﹣(4+k)x﹣1=0,
x1x2=﹣1,
x1+x2=k+4,
y1y2=k2x1x2+4k(x1+x2)+16=﹣k2+4k(k+4)+16,
y1+y2=k(k+4)+8,
1+a(k+4)﹣a2=﹣k2+4k(k+4)+16﹣b(k2+4k+8)+b2,
1+ak+4a﹣a2=﹣k3+4k2+16k+16﹣bk2﹣4bk﹣8b+b2,
∴(3﹣b)k2+(16﹣4b﹣a)k+a2﹣4a﹣8b+b2+15=0,
∵y=kx+b有无数条,
∴k为任何实数,3﹣b=0,16﹣4b﹣a=0,a2﹣4a﹣8b+b2+15=0,
解得a=4,b=3,
存在点T(4,3)使得不过定点T的任意直线l都有∠MTN=90°.
38.(2017•信丰县自主招生)如图,抛物线C1:y1=ax2+2ax(a>0)与x轴交于点A,顶点为点P.
(1)直接写出抛物线C1的对称轴是 直线x=﹣1 ,用含a的代数式表示顶点P的坐标 (﹣1,﹣a) ;
(2)把抛物线C1绕点M(m,0)旋转180°得到抛物线C2(其中m>0),抛物线C2与x轴右侧的交点为点B,顶点为点Q.
①当m=1时,求线段AB的长;
②在①的条件下,是否存在△ABP为等腰三角形,若存在请求出a的值,若不存在,请说明理由;
③当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积.
【解答】解:(1)∵抛物线C1:y1=ax2+2ax=a(x+1)2﹣a,
∴x=﹣1,P(﹣1,﹣a)
故答案为:直线x=﹣1,(﹣1,﹣a),
(2)①由旋转知,MA=MB,
当y1=0时,x1=﹣2,x2=0,
∴A(﹣2,0),
∴AO=2,
∵M(1,0),
∴AM=3,
∴AB=2MA=2×3=6;
②∵A(﹣2,0),AB=6,
∴B(4,0)
∵A(﹣2,0),P(﹣1,﹣a),
∴,
当AB=AP时,1+a2=62,解得:(负值已舍去);
当AB=BP时,25+a2=62,解得:(负值已舍去);
当AP=BP时,1+a2=25+a2,不成立,
即当a 取或时,△ABP为等腰三角形;
③如图,过点P作PH⊥x轴于H,
∵点A与点B,点P与点Q均关于M点成中心对称,
故四边形APBQ为平行四边形,
当∠APB=90°时,四边形APBQ为矩形,
此时△APH∽△PBH,
∴,
即,
∴a2=2m+3,
∴,
当a=3时,,
∴S=(2m+4)a=(2×3+4)×3=30.
39.(2017•江阴市自主招生)已知二次函数y=ax2﹣4ax+a2+2(a<0)图象的顶点G在直线AB上,其中
A(﹣,0)、B(0,3),对称轴与x轴交于点E.
(1)求二次函数y=ax2﹣4ax+a2+2的关系式;
(2)点P在对称轴右侧的抛物线上,且AP平分四边形GAEP的面积,求点P坐标;
(3)在x轴上方,是否存在整数m,使得当<x≤时,抛物线y随x增大而增大?若存在,求出所有满足条件的m值;若不存在,请说明理由.
【解答】解(1)设直线AB的关系式为y=kx+b,
将点A(﹣,0)、B(0,3)代入y=kx+b中,
,解得:,
∴直线AB的关系式为y=2x+3.
∵抛物线y=ax2﹣4ax+a2+2=a(x﹣2)2+a2﹣4a+2,
∴点G(2,a2﹣4a+2).
∵点G在直线AB上,
∴a2﹣4a+2=4+3=7,
∴a=﹣1,a=5(舍去),
∴二次函数关系式为y=﹣x2+4x+3.
(2)∵AP平分四边形GAEP的面积,
∴2S△AEP=S四边形GAEP.
设点P的坐标为(t,﹣t2+4t+3),
∴2××(2+)(﹣t2+4t+3)=×7×(2+)+×7×(t﹣2),
整理得:2t2﹣6 t﹣3=0,
解得:t1=,t2=(舍去),
∴点P的坐标为(,6+).
(3)当y=﹣x2+4x+3=0时,x1=2﹣,x2=2+,
∴抛物线与x轴交点C(2﹣,0),D(2+,0).
∵在x轴上方,抛物线y随x增大而增大,
∴2﹣<x≤2.
又∵<x≤,
∴,
解得:4﹣3≤m≤﹣.
∵整数m为整数,
∴m为﹣3,﹣2、﹣1.
又∵<,
∴m>﹣,
∴m取﹣2、﹣1.
40.(2017•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.
【解答】解:(1)∵直线y=x﹣3经过B、C两点,
∴B(3,0),C(0,﹣3),
∵y=x2+bx+c经过B、C两点,
∴,
解得,
故抛物线的解析式为y=x2﹣2x﹣3;
(2)如图1,y=x2﹣2x﹣3,
y=0时,x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
∴A(﹣1,0),
∴OA=1,OB=OC=3,
∴∠ABC=45°,AC=,AB=4,
∵PE⊥x轴,
∴∠EMB=∠EBM=45°,
∵点P的横坐标为1,
∴EM=EB=3﹣t,
连结AM,
∵S△ABC=S△AMC+S△AMB,
∴AB•OC=AC•MN+AB•EM,
∴×4×3=×d+×4(3﹣t),
∴d=t;
(3)如图2,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴对称轴为x=1,
∴由抛物线对称性可得D(2,﹣3),
∴CD=2,
过点B作BK⊥CD交直线CD于点K,
∴四边形OCKB为正方形,
∴∠OBK=90°,CK=OB=BK=3,
∴DK=1,
∵BQ⊥CP,
∴∠CQB=90°,
过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,OG⊥OS交KB于G,
∴∠OHC=∠OIQ=∠OIB=90°,
∴四边形OHQI为矩形,
∵∠OCQ+∠OBQ=180°,
∴∠OBG=∠OCS,
∵OB=OC,∠BOG=∠COS,
∴△OBG≌△OCS,
∴QG=OS,∠GOB=∠SOC,
∴∠SOG=90°,
∴∠ROG=45°,
∵OR=OR,
∴△OSR≌△OGR,
∴SR=GR,
∴SR=CS+BR,
∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,
∴∠BOR=∠TBK,
∴tan∠BOR=tan∠TBK,
∴=,
∴BR=TK,
∵∠CTQ=∠BTK,
∴∠QCT=∠TBK,
∴tan∠QCT=tan∠TBK,
设ST=TD=m,
∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,
在Rt△SKR中,
∵SK2+RK2=SR2,
∴(2m+1)2+(2﹣m)2=(3﹣m)2,
解得m1=﹣2(舍去),m2=;
∴ST=TD=,TK=,
∴tan∠TBK==÷3=,
∴tan∠PCD=,
过点P作PE′⊥x轴于E′交CD于点F′,
∵CF′=OE′=t,
∴PF′=t,
∴PE′=t+3,
∴P(t,﹣t﹣3),
∴﹣t﹣3=t2﹣2t﹣3,
解得t1=0(舍去),t2=.
∴MN=d=t=×=.