• 508.00 KB
  • 2021-05-13 发布

2010中考数学试题分类汇编共28专题27阅读理解

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010丽水 23. 小刚上午7:30从家里出发步行上学,途经少年宫时走了步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完‎100米用了150步.‎ ‎(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?‎ t(分)‎ O s(米)‎ A B C D ‎(第23题)‎ ‎(2) 下午4:00,小刚从学校出发,以‎45米/分的速度行走,按上学时的原路回家,在未到少年宫‎300米处与同伴玩了半小时后,赶紧以 ‎110米‎/分的速度回家,中途没有再停留.问:‎ ‎① 小刚到家的时间是下午几时?‎ ‎② 小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.‎ 答案: 23. (本题10分) ‎ 解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150=(米),‎ 所以小刚上学的步行速度是120×=80(米/分). ……2分 小刚家和少年宫之间的路程是80×10=800(米). ……1分 少年宫和学校之间的路程是80×(25-10)=1200(米). ……1分 ‎(2) ① (分钟),‎ 所以小刚到家的时间是下午5:00. ……2分 ‎② 小刚从学校出发,以‎45米/分的速度行走到离少年宫‎300米处时实际走了‎900米,用时分,此时小刚离家1 ‎100米,所以点B的坐标是(20,1100).‎ ‎……2分 线段CD表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s(米)与行走时间t(分)之间的函数关系,由路程与时间的关系得 ,‎ 即线段CD所在直线的函数解析式是. ……2分 ‎(线段CD所在直线的函数解析式也可以通过下面的方法求得:‎ 点C的坐标是(50,1100),点D的坐标是(60,0)‎ 设线段CD所在直线的函数解析式是,将点C,D的坐标代入,得 ‎ 解得 ‎ 所以线段CD所在直线的函数解析式是)‎ ‎2010丽水 24. △ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.‎ O y x C B A ‎(第24题)‎ ‎1‎ ‎1‎ ‎-1‎ ‎-1‎ ‎(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;‎ ‎(2) 如果抛物线(a≠0)的对称轴经过点C,请你探究:‎ ‎① 当,,时,A,B两点是否都 在这条抛物线上?并说明理由;‎ ‎② 设b=-2am,是否存在这样的m的值,使A,B两点不 可能同时在这条抛物线上?若存在,直接写出m的值;‎ 若不存在,请说明理由.‎ 答案: 24. (本题12分)‎ 解:(1)  ∵ 点O是AB的中点, ∴ . ……1分 设点B的横坐标是x(x>0),则, ……1分 解得 ,(舍去). ‎ ‎∴ 点B的横坐标是. ……2分 ‎(2) ① 当,,时,得  ……(*)‎ ‎. ……1分 以下分两种情况讨论.‎ 情况1:设点C在第一象限(如图甲),则点C的横坐标为,‎ O y x C B A ‎(甲)‎ ‎1‎ ‎1‎ ‎-1‎ ‎-1‎ ‎. ……1分 由此,可求得点C的坐标为(,), ……1分 点A的坐标为(,),‎ ‎∵ A,B两点关于原点对称,‎ O y x C B A ‎(乙)‎ ‎1‎ ‎1‎ ‎-1‎ ‎-1‎ ‎∴ 点B的坐标为(,).‎ 将点A的横坐标代入(*)式右边,计算得,即等于点A的纵坐标;‎ 将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标.‎ ‎∴ 在这种情况下,A,B两点都在抛物线上.  ……2分 情况2:设点C在第四象限(如图乙),则点C的坐标为(,-),‎ 点A的坐标为(,),点B的坐标为(,).‎ 经计算,A,B两点都不在这条抛物线上.    ……1分 ‎(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)‎ ‎② 存在.m的值是1或-1.  ……2分 ‎(,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)‎ ‎(2010珠海)1。我们常用的数是十进制数,计算机程序使用的是二进制数 ‎(只有数码0和1),它们两者之间可以互相换算,如将(101)2,‎ ‎(1011)2换算成十进制数应为:‎ 按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 9‎ ‎(2010年镇江市)28.(2010江苏 镇江)深化理解(本小题满分9分)‎ ‎ 对非负实数x“四舍五入”到个位的值记为 即:当n为非负整数时,如果 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…‎ 试解决下列问题:‎ ‎ (1)填空:①= (为圆周率);‎ ‎ ②如果的取值范围为 ;‎ ‎ (2)①当;‎ ‎②举例说明不恒成立;‎ ‎ (3)求满足的值;‎ ‎ (4)设n为常数,且为正整数,函数范围内取值时,函数值y为整数的个数记为的个数记为b.‎ ‎ 求证:‎ 答案:(1)①3;(1分)②; (2分)‎ ‎ (2)①证明:‎ ‎ [法一]设为非负整数; (3分)‎ 为非负整数,‎ ‎ (4分)‎ ‎[法二]设为其小数部分.‎ ‎②举反例:‎ 不一定成立.(5分)‎ ‎ (3)[法一]作的图象,如图28 (6分)‎ ‎ (注:只要求画出草图,如果没有把有关点画成空心点,不扣分)‎ ‎ (7分)‎ ‎[法二]‎ ‎ (4)为整数,‎ 当的增大而增大,‎ ‎, ①‎ ‎ ② (8分)‎ 则 ③‎ 比较①,②,③得: (9分)‎ ‎23. (2010年金华) (本题10分)‎ 已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.‎ y P Q M N O x ‎1‎ ‎2‎ ‎-1‎ ‎-2‎ ‎-3‎ ‎-3‎ ‎-2‎ ‎-1‎ ‎1‎ ‎2‎ ‎3‎ ‎(第23题图)‎ ‎(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ‎1M1N1,并写出点M1的坐标; ‎ ‎(温馨提示:作图时,别忘 了用黑色字迹的钢笔或签字 笔描黑喔!)‎ ‎ ‎ M1的坐标是 ▲ ‎ ‎ (2) 请你通过改变P点坐标,对直线M‎1 M的解析式y﹦kx+b进行探究可得 k﹦ ▲ , 若点P的坐标为(m,0)时,则b﹦ ▲ ;‎ ‎ (3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.‎ 解:(1)如图;M1 的坐标为(-1,2) ……2分 ‎ (2), …………………4分(各2分)‎ ‎ (3)由(2)知,直线M‎1 M的解析式为 x ‎ 则(,)满足 ‎ 解得 ,‎ ‎ ∴ ,‎ ‎ ∴M1,M的坐标分别为(,),(,).……………4分 M1‎ P Q M N O y ‎1‎ ‎2‎ ‎3‎ ‎-1‎ ‎-2‎ ‎-3‎ ‎-3‎ ‎-2‎ ‎-1‎ ‎1‎ ‎2‎ ‎3‎ Q1‎ N1‎ ‎(2010年眉山)6.下列命题中,真命题是 A.对角线互相垂直且相等的四边形是正方形 B.等腰梯形既是轴对称图形又是中心对称图形 C.圆的切线垂直于经过切点的半径 D.垂直于同一直线的两条直线互相垂直 答案:C 北京22. 阅读下列材料:‎ ‎ 小贝遇到一个有趣的问题:在矩形ABCD中,AD=‎8cm,AB=‎6cm。‎ ‎ 现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB ‎ 边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变 ‎ 运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一 ‎ 直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹 ‎ 角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边 ‎ 夹角为45°的方向作直线运动,…,如图1所示,‎ ‎ 问P点第一次与D点重合前与边相碰几次,P点 ‎ 第一次与D点重合时所经过的路线的总长是多少。‎ ‎ 小贝的思考是这样开始的:如图2,将矩形ABCD ‎ 沿直线CD折迭,得到矩形A1B1CD,由轴对称的 ‎ 知识,发现P2P3=P2E,P‎1A=P1E。‎ ‎ 请你参考小贝的思路解决下列问题:‎ ‎ (1) P点第一次与D点重合前与边相碰 次;‎ ‎ P点从A点出发到第一次与D点重合时所经过的路径的总长是 cm;‎ ‎ (2) 近一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,‎ ‎ 按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相 ‎ 邻的两边上。若P点第一次与B点重合前与边相碰7次,则AB:AD的值为 。‎ ‎(2010陕西省)25.问题探究 ‎ (1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;‎ ‎ (2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。‎ ‎ 问题解决 (1) 如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由 解:(1)如图①‎ ‎(2)如图②连结AC 、BC交与P则P为矩形对称中心。作直线MP,直线MP即为所求。‎ (3) 如图③存在直线l 过点D的直线只要作 DA⊥OB与点A ‎ 则点P(4,2)为矩形ABCD的对称中心 ‎∴过点P的直线只要平分△DOA的面积即可 易知,在OD边上必存在点H使得PH将△DOA 面积平分。‎ 从而,直线PH平分梯形OBCD的面积 即直线 PH为所求直线l 设直线PH的表达式为 y=kx+b 且点P(4,2)‎ ‎∴2=4k+b 即b=2-4k ‎∴y=kx+2-4k ‎∵直线OD的表达式为y=2x ‎ y=kx+2-4k ‎ ‎∴ 解之 ‎ y=2x ‎ ‎∴点H的坐标为(,)‎ ‎∴PH与线段AD的交点F(2,2-2k)‎ ‎∴0<2-2k<4‎ ‎∴-1<k<1‎ ‎∴S△DHF=‎ ‎∴解之,得。(舍去)‎ ‎∴b=8-‎ ‎∴直线l的表达式为y=‎ ‎(2010广东中山)21.阅读下列材料:‎ ‎1×2 = ×(1×2×3-0×1×2),‎ ‎2×3 = ×(2×3×4-1×2×3),‎ ‎3×4 = ×(3×4×5-2×3×4),‎ 由以上三个等式相加,可得 ‎1×2+2×3+3×4 = ×3×4×5 = 20。‎ 读完以上材料,请你计算下列各题:‎ (1) ‎1×2+2×3+3×4+···+10×11(写出过程);‎ (2) ‎1×2+2×3+3×4+···+n×(n+1) = _________;‎ (3) ‎1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。‎ ‎21、(1)原式 (2) (3)1260‎