- 206.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
温州中考第23题第1次专题练习20160416
一.解答题(共10小题)
1.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒 .
(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.
①根据题意,完成以下表格:
纸盒
纸板
竖式纸盒(个)
横式纸盒(个)
x
100﹣x
正方形纸板(张)
2(100﹣x)
长方形纸板(张)
4x
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.
2.有一种规格为165cm×30cm的标准板材,可按如图所示的两种裁法得到规格为60cm×30cm的A型板材与规格为35cm×30cm的B型板材.
(1)某公司装修需要A型板材140张,B型板材215张.现购得标准板材100张,恰好裁完.设按裁法一裁剪的标准板材为x张.
①根据题意,完成以下表格:
标准板材裁法一
标准板材裁法二
x(张)
(张)
A型板材(张)
2(100﹣x)
B型板材(张)
3x
②按以上两种裁法的张数来分,共有哪几种裁剪方案?
(2)若装修师傅购买标准板材若干张,按以上两种方法裁剪后,得到A型板材恰为140张,B型板材恰为a张(180<a<200),则购进的标准板材可以是 张.(写出一个即可)
3.某校积极开展“促进有效学习”课堂教学改革实验,班内各个学习小组共设四个评价项目每月都要评奖:自主学习,课堂展示,互动点评,反馈检测,每个项目得分都按一定百分比折算后计入总分.下表为繁星、新月、初阳三个小组的得分情况(单位:分)
自主学习
课堂展示
互动点评
反馈检测
繁星
80
50
40
70
新月
40
80
90
35
初阳
40
95
85
35
(1)月底,繁星组组长猜测自主学习,课堂展示,互动点评,反馈检测这四项得分分别按10%,30%,20%,40%折算计入总分,根据猜测,求出繁星组的总分;
(2)学校决定,总分为60分以上(包括60分)的学习小组获得优秀小组称号.现获悉新月、初阳两组的总分分别是64.5分,69.5分,繁星组的自主学习,反馈检测两项得分折算后的分数和是29分,问:繁星组能否获得优秀?
4.今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.
(1)当n=500时,
①根据信息填表(用含x代数式表示)
树苗类型
甲种树苗
乙种树苗
买树苗数量(单位:棵)
x
买树苗的总费用(单位:元)
②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?
(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26000元,求n的最大值.
5.温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,①根据信息填表:
A地
B地
C地
合计
产品件数(件)
x
2x
200
运费(元)
30x
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.
6.2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.
(1)求这份快餐中所含脂肪质量;
(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.
7.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:
品名
价格
甲种口罩
乙种口罩
进价(元/袋)
20
25
售价(元/袋)
26
35
(1)求该网店购进甲、乙两种口罩各多少袋?
(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?
8.今年小芳家添置了新电器.已知今年5月份的用电量是240千瓦时.
(1)若今年6月份用电量增长率是7月份用电量增长率的1.5倍,设今年7月份用电量增长率为x,
补全下列表格内容(用含x代数式表示)
月份
6月份
7月份
月增长率
x
用电量
(单位:千瓦时)
(2)在(1)的条件下,预计今年7月份的用电量将达到480千瓦时,求今年7月份用电量增长率x的值.(精确到1%)
(3)若今年6月份用电量增长率是7月份用电量增长率的n倍,6月份用电量为360千瓦时,预计今年7月份的用电量将不低于500千瓦时.则n的最大值为 .(直接写出答案)
9.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.
(1)求每辆A型车和B型车的售价各为多少元.
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?
10.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?
温州中考第23题第2次专题练习
参考答案与试题解析
一.解答题(共10小题)
1.(2009•温州)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒 .
(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.
①根据题意,完成以下表格:
纸盒
纸板
竖式纸盒(个)
横式纸盒(个)
x
100﹣x
正方形纸板(张)
2(100﹣x)
长方形纸板(张)
4x
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.
【解答】解:(1)①如表:
纸盒
纸板
竖式纸盒(个)
横式纸盒(个)
x
100﹣x
正方形纸板(张)
x
2(100﹣x)
长方形纸板(张)
4x
3(100﹣x)
②由题意得,,
解得38≤x≤40.
又∵x是整数,
∴x=38,39,40.
答:有三种方案:生产竖式纸盒38个,横式纸盒62个;
生产竖式纸盒39个,横式纸盒61个;
生产竖式纸盒40个,横式纸盒60个;
(2)如果设x个竖式需要正方形纸板x张,长方形纸板横4x张;y个横式需要正方形纸板2y张,长方形纸板横3y张,可得方程组,
于是我们可得出y=,
因为已知了a的取值范围是290<a<306,
所以68.4<y<71.6,由y取正整数,
则,当取y=70,则a=298;
当取y=69时,a=303;
当取y=71时,a=293.
293或298或303(写出其中一个即可).
2.(2014•温州校级二模)有一种规格为165cm×30cm的标准板材,可按如图所示的两种裁法得到规格为60cm×30cm的A型板材与规格为35cm×30cm的B型板材.
(1)某公司装修需要A型板材140张,B型板材215张.现购得标准板材100张,恰好裁完.设按裁法一裁剪的标准板材为x张.
①根据题意,完成以下表格:
标准板材裁法一
标准板材裁法二
x(张)
(张)
A型板材(张)
2(100﹣x)
B型板材(张)
3x
②按以上两种裁法的张数来分,共有哪几种裁剪方案?
(2)若装修师傅购买标准板材若干张,按以上两种方法裁剪后,得到A型板材恰为140张,B型板材恰为a张(180<a<200),则购进的标准板材可以是 93或94或95 张.(写出一个即可)
【解答】解:(1)①
标准板材裁法一(张)
标准板材裁法二(张)
x
100﹣x
A型板材(张)
x
2(100﹣x)
B型板材(张)
3x
100﹣x
②由题意,得
解得57.5≤x≤60
又∵x是整数
∴x=58,59,60
答:共有三种裁剪方案:按裁法一裁剪58张,按裁法二裁剪42张;按裁法一裁剪59张,按裁法二裁剪41张;按裁法一裁剪60张,按裁法二裁剪40张.
(2)设标准板中有m张安裁法1裁剪,有n张安裁法2裁剪,根据题意得:
,
整理得:,
解得44<n<48,由于n为正整数,则
n=45,46,47,
则m=50,48,46,
故标准板材为:95张,94张,93张.
3.(2014•温州二模)某校积极开展“促进有效学习”课堂教学改革实验,班内各个学习小组共设四个评价项目每月都要评奖:自主学习,课堂展示,互动点评,反馈检测,每个项目得分都按一定百分比折算后计入总分.下表为繁星、新月、初阳三个小组的得分情况(单位:分)
自主学习
课堂展示
互动点评
反馈检测
繁星
80
50
40
70
新月
40
80
90
35
初阳
40
95
85
35
(1)月底,繁星组组长猜测自主学习,课堂展示,互动点评,反馈检测这四项得分分别按10%,30%,20%,40%折算计入总分,根据猜测,求出繁星组的总分;
(2)学校决定,总分为60分以上(包括60分)的学习小组获得优秀小组称号.现获悉新月、初阳两组的总分分别是64.5分,69.5分,繁星组的自主学习,反馈检测两项得分折算后的分数和是29分,问:繁星组能否获得优秀?
【解答】解:(1)繁星小组总分为80×10%+50×30%+40×20%+70×40%=59.
(2)设课堂展示所占百分比为x,活动点评所占百分比为y
由题意得,,
解得 ,
所以繁星组得分29+50×40%+40×20%=57<60,
所以繁星组不能获得优秀.
4.(2015•阳谷县一模)今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.
(1)当n=500时,
①根据信息填表(用含x代数式表示)
树苗类型
甲种树苗
乙种树苗
买树苗数量(单位:棵)
x
买树苗的总费用(单位:元)
②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?
(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26000元,求n的最大值.
【解答】解:①根据信息填表(用含x代数式表示) (每空格2分)
树苗类型
甲种树苗
乙种树苗
买树苗数量
(单位:棵)
500﹣x
买树苗的总费用
(单位:元)
50x
80(500﹣x)
②50x+80(500﹣x)=25600,
解得x=480,
500﹣x=20.
答:甲种树苗买了480棵,乙种树苗买了20棵.
(2)90%x+95%(n﹣x)≥92%×n,
解得x≤n
50x+80(n﹣x)=26000,
解得x=,
∴≤n,
∴n≤419,
∵n为正整数,x为正整数,
∴n的最大值=419.
5.(2012•温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,①根据信息填表:
A地
B地
C地
合计
产品件数(件)
x
2x
200
运费(元)
30x
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.
【解答】解:(1)①根据信息填表
A地
B地
C地
合计
产品件数(件)
200﹣3x
运费
1600﹣24x
50x
56x+1600
②由题意,得,
解得40≤x≤42,
∵x为正整数,
∴x=40或41或42,
∴有三种方案,分别是(i)A地40件,B地80件,C地80件;
(ii)A地41件,B地77件,C地82件;
(iii)A地42件,B地74件,C地84件;
(2)由题意,得30x+8(n﹣3x)+50x=5800,
整理,得n=725﹣7x.
∵n﹣3x≥0,
∴725﹣7x﹣3x≥0,
∴﹣10x≥﹣725,
∴x≤72.5,
又∵x≥0,
∴0≤x≤72.5且x为正整数.
∵n随x的增大而减少,
∴当x=72时,n有最小值为221.
6.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.
(1)求这份快餐中所含脂肪质量;
(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.
【解答】解:(1)400×5%=20克.
答:这份快餐中所含脂肪质量为20克;
(2)设400克快餐所含矿物质的质量为x克,由题意得:
x+4x+20+400×40%=400,
∴x=44,
∴4x=176.
答:所含蛋白质质量为176克;
(3)设所含矿物质的质量为y克,则所含蛋白质质量为4y克,所含碳水化合物的质量为(380﹣5y)克.
∴4y+(380﹣5y)≤400×85%,
∴y≥40,
∴﹣5y≤﹣200,
∴380﹣5y≤380﹣200,
即380﹣5y≤180,
∴所含碳水化合物质量的最大值为180克.
7.(2014•温州一模)2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:
品名
价格
甲种口罩
乙种口罩
进价(元/袋)
20
25
售价(元/袋)
26
35
(1)求该网店购进甲、乙两种口罩各多少袋?
(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?
【解答】解;(1)设网店购进甲种口罩x袋,乙种口罩y袋,
根据题意得出:,
解得:,
答:甲种口罩200袋,乙种口罩160袋;
(2)设乙种口罩每袋售价z元,根据题意得出:
160(z﹣25)+2×200×(26﹣20)≥3680,
解得:z≥33,
答:乙种口罩每袋售价为每袋33元.
8.(2014•温州模拟)今年小芳家添置了新电器.已知今年5月份的用电量是240千瓦时.
(1)若今年6月份用电量增长率是7月份用电量增长率的1.5倍,设今年7月份用电量增长率为x,
补全下列表格内容(用含x代数式表示)
月份
6月份
7月份
月增长率
x
用电量
(单位:千瓦时)
(2)在(1)的条件下,预计今年7月份的用电量将达到480千瓦时,求今年7月份用电量增长率x的值.(精确到1%)
(3)若今年6月份用电量增长率是7月份用电量增长率的n倍,6月份用电量为360千瓦时,预计今年7月份的用电量将不低于500千瓦时.则n的最大值为 .(直接写出答案)
【解答】解:(1)
月份
6月份
7月份
增长率
1.5x
x
用电量
(单位:千瓦时)
240(1+1.5x)
240(1+x)(1+1.5x)
(2)480=240(1+x)(1+1.5x),
解得或x=﹣2(不合题意舍去),
∴
(3)设6月的增长率为x,列方程为240(1+x)=360,
解得x=0.5,
则7月的增长率为,列不等式360(1+)≥500,
解得:n≤.∴n的最大值为,
∴n的最大值为.
9.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.
(1)求每辆A型车和B型车的售价各为多少元.
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?
【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则
,
解得 .
答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;
(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得
,
解得 2≤a≤3.
∵a是正整数,
∴a=2或a=3.
∴共有两种方案:
方案一:购买2辆A型车和4辆B型车;
方案二:购买3辆A型车和3辆B型车.
10.(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?
【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,
则乙种树每棵200元,
丙种树每棵×200=300(元);
(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000﹣3x)棵.
根据题意:
200×2x+200x+300(1000﹣3x)=210000,
解得x=300
∴2x=600,1000﹣3x=100,
答:能购买甲种树600棵,乙种树300棵,丙种树100棵;
(3)设购买丙种树y棵,则甲、乙两种树共(1000﹣y)棵,
根据题意得:
200(1000﹣y)+300y≤210000+10120,
解得:y≤201.2,
∵y为正整数,
∴y最大取201.
答:丙种树最多可以购买201棵.