- 862.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
二○○八年福州市初中毕业会考、高级中等学校招生考试
数 学 试 卷
(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)
友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.
毕业学校 姓名 考生号
一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)
1.的相反数是( )
A.5 B. C. D.
2.如图所示的物体是一个几何体,其主视图是( )
(第2题) A. B. C. D.
3.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为( )
A. B. C. D.
4.实数在数轴上的位置如图所示,下列各式正确的是( )
b
0
a
(第4题)
A. B. C. D.
5.下列计算正确的是( )
A. B. C. D.
6.下列调查中,适合用全面调查方式的是( )
A.了解某班学生“50米跑”的成绩 B.了解一批灯泡的使用寿命
C.了解一批炮弹的杀伤半径 D.了解一批袋装食品是否含有防腐剂
7.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )
A.13cm B.6cm C.5cm D.4cm
8.一次函数的图象大致是( )
A.
B.
C.
D.
A
E
D
O
C
B
(第9题)
9.如图,已知直线相交于点,平分,
,则的度数是( )
A. B. C. D.
10.已知抛物线与轴的一个交点为,
则代数式的值为( )
A.2006 B.2007 C.2008 D.2009
二、填空题(共5小题,每小题4分,满分20分.请将答案填入答题卡的相应位置)
11.因式分解: .
12.如图,在中,分别是的中点,若,则的长是 .
(第12题)
A
B
C
E
D
13.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是 .
14.如图,是的弦,于点,若,,则的半径为 cm.
A
C
B
O
(第14题)
15.如图,在反比例函数()的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则 .
x
y
O
P1
P2
P3
P4
1
2
3
4
(第15题)
三、解答题(满分90分.请将解答过程填入答题卡的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑)
16.(每小题7分,满分14分)
(1)计算:;
(2)化简:.
17.(每小题7分,满分14分)
(1)如图,在等腰梯形中,,是的中点,求证:.
(2)如图,在中,,且点的坐标为(4,2).
①画出向下平移3个单位后的;
②画出绕点逆时针旋转后的,并求点旋转到点所经过的路线长(结果保留).
18.(本题满分12分)
某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角的度数;
(3)该班学生体育测试成绩的中位数落在哪个等级内;
(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
19.(本题满分11分)
如图,是的直径,是弦,,延长到点,使得.
(1)求证:是的切线;
(2)若,求的长.
20.(本题满分12分)
今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
班级
(1)班
(2)班
(3)班
金额(元)
2000
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
21.(本题满分13分)
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?
(第21题)
22.(本题满分14分)
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(第22题)
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
二○○八年福州市初中毕业会考、高级中等学校招生考试
数学试卷参考答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
A
C
B
D
C
A
B
B
C
D
二、填空题
11. 12.10 13. 14.5 15.
三、解答题
16.解:(1)原式
.
(2)原式
.
17.(1)证明:四边形是等腰梯形,
.
是的中点,
.
在和中,
(SAS).
.
(2)①图略;②图略;
点旋转到点所经过的路线长.
18.解:(1)4%;(2)72;(3)B;
(4)依题意可知:A级和B级学生的人数和占全班总人数的76%,
.
估计这次考试中A级和B级的学生共有380人.
19.(1)证法一:如图,连接.
,
.
又,
,即.
是的切线.
证法二:如图,连接.
,
.
又,
.
,即.
是的切线.
(2)解:由(1)可得:是等腰直角三角形.
,是直径,
.
.
.
20.解:(1)设(2)班的捐款金额为元,(3)班的捐款金额为元,
则依题意,得
解得
答:(2)班的捐款金额为3000元,(3)班的捐款金额为2700元.
(2)设(1)班的学生人数为人.
则依题意,得
解得.
是正整数,或41.
答:(1)班的学生人数为40人或41人.
21.解:(1)是等边三角形.
当时..
.
.
又,
是等边三角形.
(2)过作,垂足为.
由,得.
由,得.
.
(3),
.
又,
是等边三角形.
.
,
,
.
四边形是平行四边形.
.
又,
.
,
.
,即.
解得.
当时,.
22.解:(1);.
(2)在中,,
.
设点的坐标为,其中,
顶点,
设抛物线解析式为.
①如图①,当时,,
.
解得(舍去);.
.
.
解得.
抛物线的解析式为
②如图②,当时,,
.
解得(舍去).
③当时,,这种情况不存在.
综上所述,符合条件的抛物线解析式是.
(3)存在点,使得四边形的周长最小.
如图③,作点关于轴的对称点,作点关于轴的对称点,连接,分别与轴、轴交于点,则点就是所求点.
,.
.
.
又,
,此时四边形的周长最小值是.