- 615.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
全等三角形
一.选择题
1.(2015·湖南岳阳·调研)下列命题中,真命题是( )
A. 周长相等的锐角三角形都全等; B. 周长相等的直角三角形都全等;
C. 周长相等的钝角三角形都全等; D. 周长相等的等腰直角三角形都全等;
答案:D
2.(2015·江苏江阴夏港中学·期中)如图,RtΔABC中,AB=9,BC=6,∠B=900,将ΔABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
第1题图
A. B. C.4 D.5
答案:C
3.(2015·福建漳州·一模)小明不小心把一块三角形形状的玻璃打碎成了三块, 如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )去.
A. ① B. ②
C. ③ D. ①和②
答案:C
4.(2015·辽宁东港市黑沟学校一模,3分)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
A.1个 B.2个 C.3个 D.4个
答案:C
5.(2015·山东省东营区实验学校一模)已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2.对于上述的两个判断,下列说法正确的是( )
A.①正确,②错误 B.①错误,②正确
C.①②都错误 D.①②都正确
答案:D
6.(2015•山东东营•一模)已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2.对于上述的两个判断,下列说法正确的是( )
A.①正确,②错误 B.①错误,②正确
C.①②都错误 D.①②都正确
答案:D
7.(2015•山东青岛•一模)如图2所示,在Rt中,,平分,交于点D,且,则点到的距离是:
(A)3 (B)4 (C)5 (D)6
答案:A
二.填空题
.(2015·江苏南菁中学·期中)如图,将□ABCD折叠,使点A与C重合,折痕为EF.若∠A=60°,AD=4,AB=6,则AE的长为 ▲ .
第1题图
答案:
三.解答题
1. (2015·吉林长春·二模)
答案:由旋转可知,∠DAE=90°,AD=AE.
∵∠BAC=90°,
∴∠BAC=∠DAE.
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE. (4分)
∵AB=AC,
∴△ABD≌△ACE.∴BD=CE. (6分)
2.(2015·江苏江阴·3月月考)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
B
A
F
C
D
E
答案:解:通过证△ABC≌△DEF,得∠ACB=∠DFE,说明BC∥EF.
3. (2015·北京市朝阳区·一模)已知:如图,E是BC上一点,AB=EC,AB∥CD, BC=CD.
求证:AC=ED.
答案:证明:∵AB∥CD,
∴∠B=∠DCE. …………………………………………………………………1分
在△ABC和△ECD中,
4.(2015·广东潮州·期中)已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.
求证:△ABC≌△CDE
(第20题图)
B
C
E
A
D
证明:∵AC∥DE, ∴∠ACD=∠D,∠BCA=∠E …………………2分
又∵∠ACD=∠B, ∴∠B=∠D ……………………4分
又∵AC=CE, ∴△ABC≌△CDE ……………………7分
图1
5.(2015•山东滕州羊庄中学•4月模拟)已知:如图1,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
(1)求证:CD=AN;[
(2)若∠AMD=2∠MCD,
试判断四边形ADCN的形状,并说明理由.
答案:(本题满分10分)
证明:①∵CN∥AB,∴∠DAC=∠NCA,
∵在△AMD和△CMN中,,∴△AMD≌△CMN(ASA)……(2分)
∴AD=CN, 又∵AD∥CN, ∴四边形ADCN是平行四边形,………(4分)
∴CD=AN ………(5分)
② 四边形ADCN是矩形.………(1分)
理由如下 ∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC ∴MD=MC, ………(2分)
由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC, ∴AC=DN,………(4分)
∴四边形ADCN是矩形.………(5分)
A
D
B
E
F
O
C
M
图2
6.(2015•山东潍坊•第二学期期中)已知:如图2在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,
连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你
的结论.
答案:(8分)证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B = ∠D = 90°.
∵AE = AF,∴.∴BE=DF.(4分)
(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA = ∠DCA = 45°,BC = DC.[
∵BE=DF,∴BC-BE = DC-DF. 即.∴.∵OM = OA,∴四边形AEMF是平行四边形.∵AE = AF,∴平行四边形AEMF是菱形.(8分)
图3
7.(2015•山东潍坊广文中学、文华国际学校•一模)如图3,现有边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.
(1)求证:∠APB=∠BPH;
(2)求证:AP+HC=PH;
(3)当AP=1时,求PH的长.
答案:(1)证明:∵ PE=BE,∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.又∵四边形ABCD为正方形
图4
∴AD∥BC,∴∠APB=∠PBC.
∴∠APB=∠BPH. ----------------------4分
(2)证明:如图4,过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,∴△BCH和△BQH是直角三角形,在Rt△BCH与Rt△BQH中,
,∴Rt△BCH≌Rt△BQH(HL),∴CH=QH,∴AP+HC=PH. ---------------------------8分
(3)解:由(2)知,AP=PQ=1,∴PD=3.设QH=HC=x,则DH=4-x.
在Rt△PDH中,PD2+DH2=PH2,
即32+(4-x)2=(x+1)2,解得x=2.4,∴PH=3.4. ---------------------------12分
:z~zstep8.(2015·江西省·中等学校招生考试数学模拟)如图1,我们定义:在四边形ABCD中,若,且,则把四边形ABCD叫做互补等对边四边形.
(1)如图2,在等腰中,四边形ABCD是互补等对边四边形,求证:;
(2)如图3,在非等腰中,若四边形ABCD仍是互补等对边四边形,试问是否仍然成立,若成立,请加以证明;若不成立,请说明理由.
图1
图2
图3
第1题
网]
解:(1)是等腰三角形,,,
又四边形ABCD是互补等对边四边形,,
,≌,,
又,,
在中,,
, 同理: ,
;
(2)如图,过点A、B分别作BD的延长线与AC的垂线于点G、F,
四边形ABCD是互补等对边四边形,,,
又,,
又,,
≌,
,又≌,
,,
,,
,,
又,,
. ]
命题思路:通过数学新定义考查等腰三角形的性质、三角形内角和与外角和、三角形全等等知识,增强推理论证能力,渗透特殊到一般、变中不变的数学思想.
9.(2015·山东省枣庄市齐村中学二模)(满分8分)如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.
(1)求证:△ADE≌△BGF;
(2)若正方形DEFG的面积为16,求AC的长.
证明:略 ……………………………4分
(2)AC=6 ……………………………4分
10. ( 2015·呼和浩特市初三年级质量普查调研)(7分)在△ABC中,D是BC边的中点,EF分别在AD及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE
(2)若DE=BC,试判断四边形BFCE的形状,无需说明理由.
答案:(1)证明:∵CE∥BF,
∴∠CED=∠BFD,............2分[来@&*源:^中教~网]
∵D是BC边的中点,
∴BD=DC,.........................3分
在△BDF和△CDE中
,
∴△BDF≌△CDE(AAS);..................5分
(2)四边形BFCE是矩形.......................7分
11.(2015·山东枣庄·二模)如图,在等腰三角形ABC中,CA = CB,∠ACB = 90°,点D、E是直线BC上两点且CD = BE,过点C作CM⊥AE交AE于点M,交AB于点F,连接DF并延长交AE于点N.
(1)若AC = 2,CD = 1,求CM的值;
(2)求证:∠D =∠E.
答案:解:(1)∵CD=BE,CD=1 ∴BE=1
又∵AC=CB=2,∴CE=CB+BE=3
在Rt△ACE中
又∵CE⊥AE
∴
∴
4分
(2)
°,°,°
又∵BH⊥CB∴
7分
又∵△ABC为等腰直角三角形 ∴
又∵°,°
10分[中
12.(2015山东·枣庄一摸)如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.直线BF垂直于直线CE于点F,交CD于点G.求证:AE=CG.
答案:证明:∵点D是AB中点,AC=BC,∠ACB=90°,
∴CD⊥AB,∠ACD=∠BCD=45°,
∴∠CAD=∠CBD=45°,
∴∠CAE=∠BCG,
又∵BF⊥CE,∴∠CBG+∠BCF=90°,
又∵∠ACE+∠BCF=90°,
∴∠ACE=∠CBG,
在△AEC和△CGB中,∠CAE=∠BCG,AC=BC,∠ACE=∠CBG,[w&@ww.^zzste~p.c%om]
∴△AEC≌△CGB(ASA),
∴AE=CG.
13.(2015•山东济南•一模)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;
②随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
①判断△OBC与△ABD全等,由等边△AOB和等边△CBD得到全等,△OBC≌△ABD,
理由:∵△AOB和△CBD是等边三角形,∴OB=AB,∠OBA=∠OAB=60°,BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,
在△OBC和△ABD中, {OB=AB∠OBC=∠ABDBC=BD,
∴△OBC≌△ABD(SAS) 5分
②根据(1)容易得到∠OAE=60°,然后在中根据直角三角形30°,所对的直角边等于斜边的一半可以得到AE=2,从而得到E的坐标是固定的
∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,
又∵∠OAB=60°,∴∠OAE=180°-∠OAB-∠BAD=60°,[来
∴Rt△OEA中,AE=2OA=2,∴OE=√3,
∴点E的位置不会发生变化,E的坐标为E(0,√3).……7分
14.(2015·江苏南菁中学·期中)(本题满分8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲中的正方形ABCD、图乙中的平行四边形ABCD分别各自分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.
注:图甲、图乙在答题卡上,分割线画成实线.
答案: (本题满分8分)
略(每张图各4分)