- 464.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年高考圆锥曲线大题
一.解答题(共13小题)
1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.
2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.
3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆.
(1)求C的轨迹方程;
(2)动点P在C上运动,M满足=2,求M的轨迹方程.
4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2
.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若k=1,求|AB|的最大值;
(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k.
6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.
(1)用t表示点B到点F的距离;
(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;
(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.
7.已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,=λ,=μ,求证:+为定值.
8.设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.
9.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
10.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.
11.已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.
(1)若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;
(2)在(1)的条件下,y轴上是否存在定点M使得当k变化时,总有∠AMO=∠BMO(O为坐标原点).若存在,求出定点M的坐标;若不存在,请说明理由.
12.已知椭圆Γ:的离心率为,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)直线l与椭圆Γ交于A,B两点,AB的中点M在圆x2+y2=1上,求△AOB(O为坐标原点)面积的最大值.
13.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.
(1)求椭圆的标准方程;
(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.
2018年高考圆锥曲线大题
参考答案与试题解析
一.解答题(共13小题)
1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.
【解答】解:(1)设A(x1,y1),B(x2,y2),
∵线段AB的中点为M(1,m),
∴x1+x2=2,y1+y2=2m
将A,B代入椭圆C:+=1中,可得
,
两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,
即6(x1﹣x2)+8m(y1﹣y2)=0,
∴k==﹣=﹣
点M(1,m)在椭圆内,即,
解得0<m
∴.
(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),
可得x1+x2=2,
∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,y1+y2+y3=0,
∴x3=1,y3=﹣(y1+y2)=﹣2m
∵m>0,可得P在第四象限,故y3=﹣,m=,k=﹣1
由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.
则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,
联立,可得|x1﹣x2|=
所以该数列的公差d满足2d=|x1﹣x2|=,
∴该数列的公差为±.
2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.
【解答】解:(1)设A(x1,y1),B(x2,y2),
∵线段AB的中点为M(1,m),
∴x1+x2=2,y1+y2=2m
将A,B代入椭圆C:+=1中,可得
,
两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,
即6(x1﹣x2)+8m(y1﹣y2)=0,
∴k==﹣=﹣
点M(1,m)在椭圆内,即,
解得0<m
∴k=﹣.
(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),
可得x1+x2=2
∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,
∴x3=1
由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.
则|FA|+|FB|=4﹣,
∴|FA|+|FB|=2|FP|,
3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆.
(1)求C的轨迹方程;
(2)动点P在C上运动,M满足=2,求M的轨迹方程.
【解答】解:(1)由已知得a2=12,b2=4,故c==4,所以F1(﹣4,0)、F2(4,0),
因为C是以F2为圆心且过原点的圆,故圆心为(4,0),半径为4,
所以C的轨迹方程为(x﹣4)2+y2=16;
(2)设动点M(x,y),P(x0,y0),
则=(x+4,y),,
由,得(x+4,y)=2(x0﹣x,y0﹣y),
即,解得,
因为点P在C上,所以,
代入得,
化简得.
4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
【解答】解:(1)c==1,
∴F(1,0),
∵l与x轴垂直,
∴x=1,
由,解得或,
∴A(1.),或(1,﹣),
∴直线AM的方程为y=﹣x+,y=x﹣,
证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,
当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,
当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,
A(x1,y1),B(x2,y2),则x1<,x2<,
直线MA,MB的斜率之和为kMA,kMB之和为kMA+kMB=+,
由y1=kx1﹣k,y2=kx2﹣k得kMA+kMB=,
将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,
∴x1+x2=,x1x2=,
∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0
从而kMA+kMB=0,
故MA,MB的倾斜角互补,
∴∠OMA=∠OMB,
综上∠OMA=∠OMB.
5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若k=1,求|AB|的最大值;
(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k.
【解答】解:(Ⅰ)由题意可知:2c=2,则c=,椭圆的离心率e==,则a=,
b2=a2﹣c2=1,
∴椭圆的标准方程:;
(Ⅱ)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),
联立,整理得:4x2+6mx+3m2﹣3=0,△=(6m)2﹣4×4×3(m2﹣1)>0,整理得:m2<4,
x1+x2=﹣,x1x2=,
∴|AB|==,
∴当m=0时,|AB|取最大值,最大值为;
(Ⅲ)设直线PA的斜率kPA=,直线PA的方程为:y=(x+2),
联立,消去y整理得:(x12+4x1+4+3y12)x2+12y12x+(12y12﹣3x12﹣12x1﹣12)=0,
由代入上式得,整理得:(4x1+7)x2+(12﹣4x12)x﹣(7x12+12x1)=0,
x1•xC=﹣,xC=﹣,则yC=(﹣+2)=,
则C(﹣,),同理可得:D(﹣,),
由Q(﹣,),则=(,),=(,),
由与三点共线,则×=×,
整理得:y2﹣x2=y1﹣x1,则直线AB的斜率k==1,
∴k的值为1.
6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤
t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.
(1)用t表示点B到点F的距离;
(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;
(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.
【解答】解:(1)方法一:由题意可知:设B(t,2t),
则|BF|==t+2,
∴|BF|=t+2;
方法二:由题意可知:设B(t,2t),
由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;
(2)F(2,0),|FQ|=2,t=3,则|FA|=1,
∴|AQ|=,∴Q(3,),设OQ的中点D,
D(,),
kQF==﹣,则直线PF方程:y=﹣(x﹣2),
联立,整理得:3x2﹣20x+12=0,
解得:x=,x=6(舍去),
∴△AQP的面积S=××=;
(3)存在,设P(,y),E(,m),则kPF==,kFQ=,
直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,),
根据+=,则E(+6,),
∴()2=8(+6),解得:y2=,
∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).
7.已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,=λ,=μ,求证:+为定值.
【解答】解:(Ⅰ)∵抛物线C:y2=2px经过点
P(1,2),∴4=2p,解得p=2,
设过点(0,1)的直线方程为y=kx+1,
设A(x1,y1),B(x2,y2)
联立方程组可得,
消y可得k2x2+(2k﹣4)x+1=0,
∴△=(2k﹣4)2﹣4k2>0,且k≠0解得k<1,
且k≠0,x1+x2=﹣,x1x2=,
又∵PA、PB要与y轴相交,∴直线l不能经过点(1,﹣2),即k≠﹣3,
故直线l的斜率的取值范围(﹣∞,﹣3)∪(﹣3,0)∪(0,1);
(Ⅱ)证明:设点M(0,yM),N(0,yN),
则=(0,yM﹣1),=(0,﹣1)
因为=λ,所以yM﹣1=﹣yM﹣1,故λ=1﹣yM,同理μ=1﹣yN,
直线PA的方程为y﹣2=(x﹣1)=(x﹣1)=(x﹣1),
令x=0,得yM=,同理可得yN=,
因为+=+=+======2,
∴+=2,∴+为定值.
8.设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.
【解答】解:(1)设椭圆的焦距为2c,
由已知可得,又a2=b2+c2,
解得a=3,b=2,
∴椭圆的方程为:,
(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).
∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],
∴x2=5x1,
易知直线AB的方程为:2x+3y=6.
由,可得>0.
由,可得,
⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣.
由>0.可得k,故k=﹣,
9.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),
设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),
则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,
由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,
∴直线l的方程y=x﹣1;
方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,
∴θ=,则直线的斜率k=1,
∴直线l的方程y=x﹣1;
(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y=﹣x+5,
设所求圆的圆心坐标为(x0,y0),则,
解得:或,
因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.
10.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.
【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,
由椭圆的离心率为e=,
∴=;
又a2=b2+c2,
∴2a=3b,
由|FB|=a,|AB|=b,且|FB|•|AB|=6;
可得ab=6,
从而解得a=3,b=2,
∴椭圆的方程为+=1;
(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;
∴|PQ|sin∠AOQ=y1﹣y2;
又|AQ|=,且∠OAB=,
∴|AQ|=y2,
由=sin∠AOQ,可得5y1=9y2;
由方程组,消去x,可得y1=,
∴直线AB的方程为x+y﹣2=0;
由方程组,消去x,可得y2=;
由5y1=9y2,可得5(k+1)=3,
两边平方,整理得56k2﹣50k+11=0,
解得k=或k=;
∴k的值为或.
11.已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.
(1)若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;
(2)在(1)的条件下,y轴上是否存在定点M使得当k变化时,总有∠AMO=∠BMO(O为坐标原点).若存在,求出定点M的坐标;若不存在,请说明理由.
【解答】解:(1)由得(4+a2k2)x2+2a2kx﹣3a2=0,
显然△>0,
设A(x1,y1),B(x2,y2),D(x0,y0),
则,,
∴,.
∴=.
∴a2=8.
所以椭圆C的方程为.
(2)假设存在定点M,且设M(0,m),
由∠AMO=∠BMO得kAM+kBM=0.
∴.
即y1x2+y2x1﹣m(x1+x2)=0,
∴2kx1x2+x1+x2﹣m(x1+x2)=0.
由(1)知,,
∴.
∴m=4.
所以存在定点M(0,4)使得∠AMO=∠BMO.
12.已知椭圆Γ:的离心率为,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)直线l与椭圆Γ交于A,B两点,AB的中点M在圆x2+y2=1上,求△AOB(O为坐标原点)面积的最大值.
【解答】解:(Ⅰ)根据题意,椭圆Γ:的离心率为,则,得,,
所以,
由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,
所以a=2,b=1,
椭圆Γ的标准方程为.
(Ⅱ)根据题意,直线l与椭圆Γ交于A,B两点,
当直线l的斜率不存在时,
令x=±1,得,,
当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),
由,得(1+4k2)x2+8kmx+4m2﹣4=0,
则,,
所以,,
将代入x2+y2=1,得,
又因为=,
原点到直线l的距离,
所以
==×
==.
当且仅当12k2=1+4k2,即时取等号.
综上所述,△AOB面积的最大值为1.
13.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.
(1)求椭圆的标准方程;
(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△
AOB的面积是△AOM的面积的2倍,求直线AB的方程.
【解答】解:(1)设椭圆的焦距为2c,由题意得,=,=4,
解得a=2,c=b=.
∴椭圆的方程为:+=1.
(2)△AOB的面积是△AOM的面积的2倍,∴AB=2AM,
∴点M为AB的中点.
∵椭圆的方程为:+=1.∴A(﹣2,0).
设M(x0,y0),则B(2x0+2,2y0).
由+=,+=1,
化为:﹣18x0﹣16=0,≤x0≤.
解得:x0=﹣.
代入解得:y0=,
∴kAB=,
因此,直线AB的方程为:y=(x+2).
相关文档
- 徐州市铜山区高三5月高考模拟语文2021-05-139页
- 高考化学易错题解题方法大全基本理2021-05-1317页
- 名校必备高考江苏英语卷分析2021-05-1312页
- 2019高考数学理通用版二轮精准提分2021-05-1311页
- 2020版高考地理一轮复习 第6章第212021-05-136页
- 高考英语热点题型和提分秘籍专题152021-05-1367页
- 虹口区高考英语二模2021-05-1314页
- 高考数学理科二轮复习测试专题二三2021-05-136页
- 2016全国高考文综试题和答案解析安2021-05-1310页
- 专题07动量(测)-2017年高考物理二轮2021-05-1310页