- 971.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年普通高等学校招生全国统一考试(安徽卷)
数 学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.
考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.
2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效.
4. 考试结束,监考员将试题卷和答题卡一并收回.
参考公式:
如果事件互斥,那么 球的表面积公式
其中表示球的半径
如果事件相互独立,那么 球的体积公式
其中表示球的半径
第I卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1).若位全体实数的集合,则下列结论正确的是( )
A. B.
C. D.
(2).若,, 则( )
A. (1,1) B.(-1,-1) C.(3,7) D.(-3,-7)
(3).已知是两条不同直线,是三个不同平面,下列命题中正确的是( )
A. B.
C. D.
(4).是方程至少有一个负数根的( )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
(5).在三角形中,,则的大小为( )
A. B. C. D.
(6).函数的反函数为
A. B.
C. D.
(7).设则中奇数的个数为( )
A.2 B.3 C.4 D.5
(8).函数图像的对称轴方程可能是( )
A. B. C. D.
(9).设函数 则( )
A.有最大值 B.有最小值 C.是增函数 D.是减函数
(10)若过点的直线与曲线有公共点,则直线的斜率的取值范围为( )
A. B. C. D.
(11) 若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为 ( )
A. B.1 C. D.5
(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( )
A. B. C. D.
2008年普通高等学校招生全国统一考试(安徽卷)
数 学(文科)
第Ⅱ卷(非选择题 共90分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.
(13).函数的定义域为 .
(14).已知双曲线的离心率是。则=
(15) 在数列在中,,,,其中为常数,
则
(16)已知点在同一个球面上,若
,则两点间的球面距离是
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
(17).(本小题满分12分)
已知函数
(Ⅰ)求函数的最小正周期和图象的对称轴方程
(Ⅱ)求函数在区间上的值域
(18).(本小题满分12分)
在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.
(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率。
(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。
(19).(本小题满分12分
如图,在四棱锥中,底面四边长为1的 菱形,, , ,为的中点。
(Ⅰ)求异面直线AB与MD所成角的大小;
(Ⅱ)求点B到平面OCD的距离。
(20).(本小题满分12分)
设函数为实数。
(Ⅰ)已知函数在处取得极值,求的值;
(Ⅱ)已知不等式对任意都成立,求实数的取值范围。
(21).(本小题满分12分)
设数列满足其中为实数,且
(Ⅰ)求数列的通项公式
(Ⅱ)设,,求数列的前项和;
(Ⅲ)若对任意成立,证明
(22).(本小题满分14分)
设椭圆其相应于焦点的准线方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知过点倾斜角为的直线交椭圆于两点,求证:
;
(Ⅲ)过点作两条互相垂直的直线分别交椭圆于和,求 的最小值
2008年高考安徽文科数学试题参考答案
一. 选择题
1D 2B 3B 4B 5A 6C 7A 8D 9A 10D 11C 12C
二. 13: 14: 4 15: -1 16:
三. 解答题
17解:
(1)
(2)
因为在区间上单调递增,在区间上单调递减,
所以 当时,取最大值 1
又 ,当时,取最小值
所以 函数 在区间上的值域为
18解:
(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g”的概率为,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为
(2)设表示所抽取的三张卡片中,恰有张卡片带有后鼻音“g”的事件,且其相应的概率为则
,
因而所求概率为
19 方法一(综合法)
(1)
为异面直线与所成的角(或其补角)
作连接
,
所以 与所成角的大小为
(2)点A和点B到平面OCD的距离相等,
连接OP,过点A作 于点Q,
又 ,线段AQ的长就是点A到平面OCD的距离
,
,所以点B到平面OCD的距离为
方法二(向量法)
作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系
,
(1)设与所成的角为,
,
与所成角的大小为
(2)
设平面OCD的法向量为,则
即
取,解得
设点B到平面OCD的距离为,则为在向量上的投影的绝对值,
, .
所以点B到平面OCD的距离为
20 解:
(1) ,由于函数在时取得极值,所以
即
(2) 方法一
由题设知:对任意都成立
即对任意都成立
设 , 则对任意,为单调递增函数
所以对任意,恒成立的充分必要条件是
即 ,
于是的取值范围是
方法二
由题设知:对任意都成立
即对任意都成立
于是对任意都成立,即
于是的取值范围是
21解 (1) 方法一:
当时,是首项为,公比为的等比数列。
,即 。当时,仍满足上式。
数列的通项公式为 。
方法二
由题设得:当时,
时,也满足上式。
数列的通项公式为 。
(2) 由(1)得
(3) 由(1)知
若,则
由对任意成立,知。下面证,用反证法
方法一:假设,由函数的函数图象知,当趋于无穷大时,趋于无穷大
不能对恒成立,导致矛盾。。
方法二:假设,,
即 恒成立 (*)
为常数, (*)式对不能恒成立,导致矛盾,
22解 :(1)由题意得:
椭圆的方程为
(2)方法一:
由(1)知是椭圆的左焦点,离心率
设为椭圆的左准线。则
作,与轴交于点H(如图)
点A在椭圆上
同理
。
方法二:
当时,记,则
将其代入方程 得
设 ,则是此二次方程的两个根.
................(1)
代入(1)式得 ........................(2)
当时, 仍满足(2)式。
(3)设直线的倾斜角为,由于由(2)可得
,
当时,取得最小值