- 824.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考数学数列大题专题训练
命题:郭治击 审题:钟世美
参考答案
1.解:(Ⅰ)设构成等比数列,其中,则
①
②
①×②并利用,得
(Ⅱ)由题意和(Ⅰ)中计算结果,知
另一方面,利用
得
所以
2.解:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,
所以.
所以A5是首项为12,公差为1的等差数列.
所以a2000=12+(2000—1)×1=2011.
充分性,由于a2000—a1000≤1,
a2000—a1000≤1
……
a2—a1≤1
所以a2000—a≤19999,即a2000≤a1+1999. 又因为a1=12,a2000=2011,
所以a2000=a1+1999.
是递增数列.
综上,结论得证。
(Ⅲ)令
因为
……
所以
因为
所以为偶数,
所以要使为偶数,
即4整除.
当时,有
当的项满足,
当不能被4整除,此时不存在E数列An,
使得
3.
4.解(1)法一:,得,
设,则,
(ⅰ)当时,是以为首项,为公差的等差数列,
即,∴
(ⅱ)当时,设,则,
令,得,,
知是等比数列,,又,
,.
法二:(ⅰ)当时,是以为首项,为公差的等差数列,
即,∴
(ⅱ)当时,,,,
猜想,下面用数学归纳法证明:
①当时,猜想显然成立;
②假设当时,,则
,
所以当时,猜想成立,
由①②知,,.
(2)(ⅰ)当时, ,故时,命题成立;
(ⅱ)当时,,
,
,以上n个式子相加得
,
.故当时,命题成立;
综上(ⅰ)(ⅱ)知命题成立.
5.解:(I)由已知可得,两式相减可得
即
又所以r=0时,
数列为:a,0,…,0,…;
当时,由已知(),
于是由可得,
成等比数列,
,
综上,数列的通项公式为
(II)对于任意的,且成等差数列,证明如下:
当r=0时,由(I)知,
对于任意的,且成等差数列,
当,时,
若存在,使得成等差数列,
则,
由(I)知,的公比,于是
对于任意的,且
成等差数列,
综上,对于任意的,且成等差数列。
6.解析:(I)由知,,而,且,则为的一个零点,且在内有零点,因此至少有两个零点
解法1:,记,则。
当时,,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,;
所以,
当时,单调递减,而,则在内无零点;
当时,单调递增,则在内至多只有一个零点;
从而在内至多只有一个零点。综上所述,有且只有两个零点。
解法2:,记,则。
当时,,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点,
综上所述,有且只有两个零点。
(II)记的正零点为,即。
(1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:
①当时,显然成立;
②假设当时,有成立,则当时,由
知,,因此,当时,成立。
故对任意的,成立。
(2)当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明:
①当时,显然成立;
②假设当时,有成立,则当时,由
知,,因此,当时,成立。
故对任意的,成立。
综上所述,存在常数,使得对于任意的,都有.
7.(1)设的公比为q,则
由成等比数列得
即
所以的通项公式为
(2)设的公比为q,则由
得
由,故方程(*)有两个不同的实根
由唯一,知方程(*)必有一根为0,代入(*)得
8.解:(I)设等差数列的公差为d,由已知条件可得
解得,故数列的通项公式为
(II)设数列,即,
所以,当时,
=
所以
综上,数列
9.解:(I)由题设 即是公差为1的等差数列。
又所以
(II)由(I)得
,
10.解:(I)当时,不合题意;
当时,当且仅当时,符合题意;
当时,不合题意。
因此所以公式q=3,故
(II)因为
所以当n为偶数时,
当n为奇数时,
综上所述,