- 207.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第六篇 不等式
第1讲 不等关系与不等式
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2014·深圳二模)设x,y∈R,则“x≥1且y≥2”是“x+y≥3”的( ).
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
解析 由不等式性质知当x≥1且y≥2时,x+y≥3;而当x=2,y=时满足x+y≥3,但不满足x≥1且y≥2,故“x≥1且y≥2”是“x+y≥3”的充分而不必要条件.
答案 A
2.(2014·保定模拟)已知a>b,则下列不等式成立的是 ( ).
A.a2-b2≥0 B.ac>bc
C.|a|>|b| D.2a>2b
解析 A中,若a=-1,b=-2,则a2-b2≥0不成立;当c=0时,B不成立;当0>a>b时,C不成立;由a>b知2a>2b成立,故选D.
答案 D
3.(2014·河南三市三模)已知0<a<1,x=loga+loga ,y=loga5,z=
loga -loga ,则 ( ).
A.x>y>z B.z>y>x
C.z>x>y D.y>x>z
解析 由题意得x=loga ,y=loga ,z=loga ,而0<a<1,∴函数y
=loga x在(0,+∞)上单调递减,∴y>x>z.
答案 D
4.已知a<0,-1<b<0,那么下列不等式成立的是 ( ).
A.a>ab>ab2 B.ab2>ab>a
C.ab>a>ab2 D.ab>ab2>a
解析 由-1<b<0,可得b<b2<1,又a<0,
∴ab>ab2>a.
答案 D
5.(2014·晋城模拟)已知下列四个条件:①b>0>a,②0>a>b,③a>0>b,④a>b>0,能推出<成立的有 ( ).
A.1个 B.2个
C.3个 D.4个
解析 运用倒数性质,由a>b,ab>0可得<,②、④正确.又正数大于负数,①正确,③错误,故选C.
答案 C
二、填空题
6.(2013·扬州期末)若a1<a2,b1<b2,则a1b1+a2b2与a1b2+a2b1的大小关系是________.
解析 作差可得(a1b1+a2b2)-(a1b2+a2b1)=(a1-a2)·(b1-b2),∵a1<a2,b1<b2,∴(a1-a2)(b1-b2)>0,即a1b1+a2b2>a1b2+a2b1.
答案 a1b1+a2b2>a1b2+a2b1
7.若角α,β满足-<α<β<,则2α-β的取值范围是________.
解析 ∵-<α<β<,
∴-π<2α<π,-<-β<,
∴-<2α-β<,又∵2α-β=α+(α-β)<α<,
∴-<2α-β<.
答案
8.(2014·南昌一模)现给出三个不等式:①a2+1>2a;②a2+b2>2;③+>+.其中恒成立的不等式共有________个.
解析 因为a2-2a+1=(a-1)2≥0,所以①不恒成立;对于②,a2+b2-2a+2b+3=(a-1)2+(b+1)2+1>0,所以②恒成立;对于③,因为(+)2-(+)2=2-2>0,且+>0,+>0,所以+>+,即③恒成立.
答案 2
三、解答题
9.比较下列各组中两个代数式的大小:
(1)3x2-x+1与2x2+x-1;
(2)当a>0,b>0且a≠b时,aabb与abba.
解 (1)∵3x2-x+1-2x2-x+1=x2-2x+2=(x-1)2+1>0,∴3x2-x+1>2x2+x-1.
(2)=aa-bbb-a=aa-ba-b=a-b.
当a>b,即a-b>0,>1时,a-b>1,∴aabb>abba.
当a1,
∴aabb>abba.
∴当a>0,b>0且a≠b时,aabb>abba.
10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到教室?
解 设从寝室到教室的路程为s,甲、乙两人的步行速度为v1,跑步速度为v2,且v1<v2.
甲所用的时间t甲=+=,
乙所用的时间t乙=,
∴=×=
=>=1.
∵t甲>0,t乙>0,∴t甲>t乙,即乙先到教室.
能力提升题组
(建议用时:25分钟)
一、选择题
1.下面四个条件中,使a>b成立的充分不必要条件是 ( ).
A.a>b+1 B.a>b-1
C.a2>b2 D.a3>b3
解析 由a>b+1,得a>b+1>b,即a>b,而由a>b不能得出a>b+1,因此,使a>b成立的充分不必要条件是a>b+1.
答案 A
2.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是 ( ).
A.c≥b>a B.a>c≥b
C.c>b>a D.a>c>b
解析 c-b=4-4a+a2=(2-a)2≥0,∴c≥b,将已知两式作差得2b=2+2a2,即b=1+a2,
∵1+a2-a=2+>0,∴1+a2>a,
∴b=1+a2>a,∴c≥b>a.
答案 A
二、填空题
3.已知f(x)=ax2-c且-4≤f(1)≤-1,-1≤f(2)≤5,则f(3)的取值范围是________.
解析 由题意,得
解得
所以f(3)=9a-c=-f(1)+f(2).
因为-4≤f(1)≤-1,所以≤-f(1)≤,
因为-1≤f(2)≤5,所以-≤f(2)≤.
两式相加,得-1≤f(3)≤20,
故f(3)的取值范围是[-1,20].
答案 [-1,20]
三、解答题
4.设00且a≠1,比较|loga(1-x)|与|loga(1+x)|的大小.
解 法一 作差比较
当a>1时,由00,∴|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2),
∵0<1-x2<1,∴loga(1-x2)<0,
从而-loga(1-x2)>0,故|loga(1-x)|>|loga(1+x)|.
当0|loga(1+x)|.
法二 平方作差
|loga(1-x)|2-|loga(1+x)|2
=[loga(1-x)]2-[loga(1+x)]2
=loga(1-x2)·loga
=loga(1-x2)·loga>0.
∴|loga(1-x)|2>|loga(1+x)|2,
故|loga(1-x)|>|loga(1+x)|.
法三 作商比较
∵==|log(1+x)(1-x)|,
∵01及>1,
∴log(1+x)>0,故>1,
∴|loga(1-x)|>|loga(1+x)|.