- 648.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年普通高等学校招生全国统一考试
理科数学(必修+选修II)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题
1.复数,为的共轭复数,则
A. B. C. D.
2.函数的反函数为
A. B.
C. D.
3.下面四个条件中,使成立的充分而不必要的条件是
A. B. C. D.
4.设为等差数列的前项和,若,公差,,则
A.8 B.7 C.6 D.5
5.设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于
A. B. C. D.
6.已知直二面角α− ι−β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于
A. B. C. D.1
7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有
A.4种 B.10种 C.18种 D.20种
8.曲线y=+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为
A. B. C. D.1
9.设是周期为2的奇函数,当0≤x≤1时,=,则=
A.- B. C. D.
10.已知抛物线C:的焦点为F,直线与C交于A,B两点.则=
A. B. C. D.
11.已知平面α截一球面得圆M,过圆心M且与α成二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4,则圆N的面积为
A.7 B.9 C.11 D.13
12.设向量a,b,c满足= =1,=,=,则的最大值等于
A.2 B. C. D.1
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效。
3.第Ⅱ卷共l0小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效)
13.(1-)20的二项展开式中,x的系数与x9的系数之差为: .y2
14.已知a∈(,),sinα=,则tan2α=
15.已知F1、F2分别为双曲线C: -
=1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = .
16.己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .
三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤
17.(本小题满分l0分)(注意:在试题卷上作答无效)
△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c=b,求 C.
18.(本小题满分12分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立
(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;
(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。
19.(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥中, ,,侧面为等边三角形,.
(Ⅰ)证明:;
(Ⅱ)求与平面所成角的大小.
20.(本小题满分12分)(注意:在试题卷上作答无效)
设数列满足且
(Ⅰ)求的通项公式;
(Ⅱ)设
21.(本小题满分12分)(注意:在试题卷上作答无效)
已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.
22.(本小题满分12分)(注意:在试题卷上作答无效)
(Ⅰ)设函数,证明:当时,;
(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为.证明:
参考答案
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数,选择题不给中间分。
一、选择题
1—6 BBADCC 7—12 BAADDA
二、填空题
13.0 14. 15.6 16.
三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤
17.解:由及正弦定理可得
…………3分
又由于故
…………7分
因为,
所以
18.解:记A表示事件:该地的1位车主购买甲种保险;
B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;
C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;
D表示事件:该地的1位车主甲、乙两种保险都不购买;
(I) …………3分
…………6分
(II)
,即X服从二项分布, …………10分
所以期望 …………12分
19.解法一:
(I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,
连结SE,则
又SD=1,故,
所以为直角。 …………3分
由,
得平面SDE,所以。
SD与两条相交直线AB、SE都垂直。
所以平面SAB。 …………6分
(II)由平面SDE知,
平面平面SED。
作垂足为F,则SF平面ABCD,
作,垂足为G,则FG=DC=1。
连结SG,则,
又,
故平面SFG,平面SBC平面SFG。 …………9分
作,H为垂足,则平面SBC。
,即F到平面SBC的距离为
由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有
设AB与平面SBC所成的角为α,
则 …………12分
解法二:
以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系C—xyz。
设D(1,0,0),则A(2,2,0)、B(0,2,0)。
又设
(I),,
由得
故x=1。
由
又由
即 …………3分
于是,
故
所以平面SAB。 …………6分
(II)设平面SBC的法向量,
则
又
故 …………9分
取p=2得。
故AB与平面SBC所成的角为
20.解:
(I)由题设
即是公差为1的等差数列。
又
所以
(II)由(I)得
, …………8分
…………12分
21.解:
(I)F(0,1),的方程为,
代入并化简得
…………2分
设
则
由题意得
所以点P的坐标为
经验证,点P的坐标为满足方程
故点P在椭圆C上。 …………6分
(II)由和题设知,
PQ的垂直平分线的方程为
①
设AB的中点为M,则,AB的垂直平分线为的方程为
②
由①、②得的交点为。 …………9分
故|NP|=|NA|。
又|NP|=|NQ|,|NA|=|NB|,
所以|NA|=|NP|=|NB|=|MQ|,
由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上 …………12分
22.解:
(I), …………2分
当,
所以为增函数,又,
因此当 …………5分
(II)
又,
所以 …………9分
由(I)知:当
因此
在上式中,令
所以