- 561.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考数学第20题:圆锥曲线
考试内容:
数学探索©版权所有www.delve.cn椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.
数学探索©版权所有www.delve.cn双曲线及其标准方程.双曲线的简单几何性质.
数学探索©版权所有www.delve.cn抛物线及其标准方程.抛物线的简单几何性质.
数学探索©版权所有www.delve.cn考试要求:
数学探索©版权所有www.delve.cn(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.
数学探索©版权所有www.delve.cn(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.
数学探索©版权所有www.delve.cn(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.
数学探索©版权所有www.delve.cn(4)了解圆锥曲线的初步应用.
圆锥曲线方程 知识要点
一、椭圆方程.
1. 椭圆方程的第一定义:
⑴①椭圆的标准方程:
i. 中心在原点,焦点在x轴上:. ii. 中心在原点,焦点在轴上:.
②一般方程:.③椭圆的标准参数方程:的参数方程为(一象限应是属于).
⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑦焦点半径:
i. 设为椭圆上的一点,为左、右焦点,则
由椭圆方程的第二定义可以推出.
ii.设为椭圆上的一点,为上、下焦点,则
由椭圆方程的第二定义可以推出.
由椭圆第二定义可知:归结起来为“左加右减”.
注意:椭圆参数方程的推导:得方程的轨迹为椭圆.
⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和
⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.
⑸若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.
二、双曲线方程.
1. 双曲线的第一定义:
⑴①双曲线标准方程:. 一般方程:.
⑵①i. 焦点在x轴上:
顶点: 焦点: 准线方程 渐近线方程:或
ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .
②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:
构成满足 (与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.
⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.
例如:若双曲线一条渐近线为且过,求双曲线的方程?
解:令双曲线的方程为:,代入得.
⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.
⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.
简证: = .
常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.
三、抛物线方程.
3. 设,抛物线的标准方程、类型及其几何性质:
图形
焦点
准线
范围
对称轴
轴
轴
顶点
(0,0)
离心率
焦点
注:①顶点.
②则焦点半径;则焦点半径为.
③通径为2p,这是过焦点的所有弦中最短的.
④(或)的参数方程为(或)(为参数).
四、圆锥曲线的统一定义..
4. 圆锥曲线的统一定义:平面内到定点F和定直线的距离之比为常数的点的轨迹.
当时,轨迹为椭圆;
当时,轨迹为抛物线;
当时,轨迹为双曲线;
当时,轨迹为圆(,当时).
5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.
因为具有对称性,所以欲证AB=CD, 即证AD与BC的中点重合即可.
注:椭圆、双曲线、抛物线的标准方程与几何性质
椭圆
双曲线
抛物线
定义
1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹
1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹
2.与定点和直线的距离之比为定值e的点的轨迹.(01)
与定点和直线的距离相等的点的轨迹.
图形
方
程
标准方程
(>0)
(a>0,b>0)
y2=2px
参数方程
(t为参数)
范围
─a£x£a,─b£y£b
|x| ³ a,yÎR
x³0
中心
原点O(0,0)
原点O(0,0)
顶点
(a,0), (─a,0), (0,b) , (0,─b)
(a,0), (─a,0)
(0,0)
对称轴
x轴,y轴;
长轴长2a,短轴长2b
x轴,y轴;
实轴长2a, 虚轴长2b.
x轴
焦点
F1(c,0), F2(─c,0)
F1(c,0), F2(─c,0)
焦距
2c (c=)
2c (c=)
离心率
e=1
准线
x=
x=
渐近线
y=±x
焦半径
通径
2p
焦参数
P
附加常用结论:
一、圆锥曲线的统一定义(第二定义):
若平面内一个动点到一个定点和一条定直线的距离之比等于一个常数,则动点的轨迹为圆锥曲线。其中定点为焦点,定直线为准线,为离心率。
当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线。
1.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:
(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;
(2)在椭圆中,最大,,在双曲线中,最大,。
2、焦点三角形问题(椭圆或双曲线上的一点与两焦点所构成的三角形):常利用第一定义和正弦、余弦定理求解。
设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,
(1)在椭圆中, ①=,且当即为短轴端点时,最大为=;②,当即为短轴端点时,的最大值为bc;
(2)对于双曲线的焦点三角形有:①;②
。
3.你了解下列结论吗?
(1)双曲线的渐近线方程为;
(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。若,焦点在x轴上,若,焦点在y轴上。
(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;
(4)通径是所有焦点弦(过焦点的弦)中最短的弦;
(5)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点
(6)等轴双曲线:实轴长与虚轴长相等,即a=b, 从而离心率e=.
(7)抛物线的焦点为F,过F的焦点弦AB的倾斜角为,则 .
以上述焦点弦AB为直径的圆与其准线相切。
二、 直线与圆锥曲线的位置关系
直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.
1。直线与圆锥曲线的交点:
直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.
2。直线与圆锥曲线的位置关系:
判断直线l与圆锥曲线r的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线的r的方程:F(x,y)=0,消去y得到一个关于x的一元方程。
即,消去y得
(1) 当a0,则有>0,直线l与圆锥曲线相交;当=0时,直线与曲线r相切;<0时,直线r与曲线r相离。
(2) 当a=0,即得到一个一次方程,则直线l与曲线r相交,此时,若r是双曲线,则直线l与双曲线r的渐近线平行;r是抛物线,则直线r与抛物线的对称轴位置关系是:平行或重合。
注意:开放型曲线(双曲线和抛物线)的特殊性:
①相交:直线与椭圆(圆)相交
直线与双曲线相交
直线与抛物线相交
②相切:直线与椭圆(圆)相切直线与椭圆(圆)只有一个公共点;
直线与双曲线相切直线与双曲线只有一个公共点;
直线与抛物线相切直线与抛物线只有一个公共点;
3.直线与圆锥曲线相交的弦长公式:
直线被圆锥曲线截得的线段称为圆锥曲线的弦。若该弦通过了圆锥曲线的焦点,此时得到的弦也叫焦点弦。当直线的斜率存在时,
弦长
当斜率k存在且非零时,
.