- 911.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2009年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
样本数据的方差
一、填空题:本大题共14小题,每小题5分,共70分。
1.若复数,其中是虚数单位,则复数的实部为______
2.已知向量和向量的夹角为,,则向量和向量的数量积__________ .
3.函数的单调减区间为_____ 1
1
O
x
y
4.函数为常数,在闭区间上的图象如图所示,则 _______ .
5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为________ .
6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生
1号
2号
3号
4号
5号
甲班
6
7
7
8
7
乙班
6
7
6
7
9
开始
输出
结束
Y
N
则以上两组数据的方差中较小的一个为________ .
7.右图是一个算法的流程图,最后输出的________ .
8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间,若两个正四面体的棱长的比为1:2,则它们的体积比为________ .
9.在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为________.
10.已知,函数,若实数满足,则的大小关系为 _______
.
11.已知集合,,若则实数的取值范围是,其中________ .
12.设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直.
上面命题中,真命题的序号________(写出所有真命题的序号).
13.如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为________.x
y
A1
B2
A2
O
T
M
14.设是公比为的等比数列,,令若数列有连续四项在集合中,则 ________
二、解答题:本大题共6小题,共计90分。
15.(本小题满分14分) 设向量(1)若与垂直,求的值;(2)求的最大值;(3)若,求证:∥.
16.(本小题满分14分)
如图,在直三棱柱中,分别是的中点,点在上,
求证:(1)∥(2)
17.(本小题满分14分) 设是公差不为零的等差数列,为其前项和,满足(1)求数列的通项公式及前项和;(2)试求所有的正整数,使得为数列中的项.
18.(本小题满分16分)
在平面直角坐标系中,已知圆和圆
x
y
O
1
1
.
.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.
19.(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为
求和关于、的表达式;当时,求证:=;
设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。
求和关于、的表达式;当时,求证:=;
设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。
20. (本小题满分16分)设为实数,函数.若,求的取值范围;求的最小值;设函数,直接写出(不需给出演算步骤)不等式的解集.
数学Ⅱ(附加题)
参考公式:
21.[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲
如图,在四边形ABCD中,△ABC≌△BAD.
求证:AB∥CD.
[解析] 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。满分10分。
证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CBA=∠CDB。再由△ABC≌△BAD得∠CAB=∠DBA。因此∠DBA=∠CDB,所以AB∥CD。
B. 选修4 - 2:矩阵与变换
求矩阵的逆矩阵.
[解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。满分10分。
解:设矩阵A的逆矩阵为则
即故
解得:,
从而A的逆矩阵为.
C. 选修4 - 4:坐标系与参数方程
已知曲线C的参数方程为(为参数,).
求曲线C的普通方程。
[解析] 本小题主要考查参数方程和普通方程的基本知识,考查转化问题的能力。满分10分。
解:因为所以
故曲线C的普通方程为:.
D. 选修4 - 5:不等式选讲
设≥>0,求证:≥.
[解析] 本小题主要考查比较法证明不等式的常见方法,考查代数式的变形能力。满分10分。
证明:
因为≥>0,所以≥0,>0,从而≥0,
即≥.
[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
22.(本题满分10分)
在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。
[解析] [必做题]本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力。满分10分。
23. (本题满分10分)
对于正整数≥2,用表示关于的一元二次方程有实数根的有序数组的组数,其中(和可以相等);对于随机选取的(和可以相等),记为关于的一元二次方程有实数根的概率。
(1)求和;
(2)求证:对任意正整数≥2,有.
[解析] [必做题]本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。
参考答案
1.【答案】
【解析】略
2.【答案】3
【解析】
3.【答案】
【解析】,由得单调减区间为。
4.【答案】3
【解析】,,所以,
5.【答案】0.2
【解析】略
6.【答案】
【解析】略
7.【答案】22
【解析】略
8.【答案】1:8
【解析】略
9.【答案】
【解析】略
10.【答案】
【解析】略
11.【答案】4
【解析】由得,;由知,所以4。
12.【答案】(1)(2)
【解析】略
13.【答案】x
y
A1
B2
A2
O
T
M
【解析】用表示交点T,得出M
坐标,代入椭圆方程即可转化解得离心率.
14.【答案】
【解析】将各数按照绝对值从小到大排列,各数减1,观察即可得解.
15.【解析】由与垂直,,
即,;
,最大值为32,所以的最大值为。
由得,即,
所以∥.
16.【解析】证明:(1)因为分别是的中点,所以,又,,所以∥;
A
B
C
A1
B1
C1
E
F
D
(2)因为直三棱柱,所以,,又,所以,又,所以。
17.(1)设公差为,则,由性质得,因为,所【解析】以,即,又由得,解得,
所以的通项公式为,前项和。
(2),令,,w.w.w.k.s.5.u.c.o.m
因为是奇数,所以可取的值为,当,时,,,是数列中的项;,时,,数列中的最小项是,不符合。
所以满足条件的正整数。
18.【解析】(1) 或,
(2)P在以C1C2的中垂线上,且与C1、C2等腰直角三角形,利用几何关系计算可得点P坐标为或。
19.【解析】(1)
当时,
显然
(2)当时,
由,故当即时,甲乙两人同时取到最大的综合满意度为
20.【解析】(1)若,则
(2)当时,
当时,
综上
(3) 时,得,
当时,;
当时,得
1)时,
2)时,
3)时,