• 184.00 KB
  • 2021-05-13 发布

高考数学复习点拨巧用正弦定理解题

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
巧用正弦定理解题 正弦定理是三角形中的一个重要定理,它揭示了三角形中边和角的关系,进而把三角函数的运算与代数式的运算联系起来,使解题极为方便。下面从五个方面举例说明:‎ 一、已知两角和任一边解三角形 例1、在△ABC中,已知中,求,及△ABC的面积S 解:依正弦定理:=,∴,代入已知条件,‎ ‎∵,又=,‎ ‎∴(或因为∠C=∠A,△ABC为等腰三角形,所以)∴‎ 点评:已知两角实际上第三个角也是已知的,故用正弦定理很方便可以求出其它边的值。‎ 二、已知两边和其中一边对角解三角形 例2、已知在△ABC中,,解这个三角形 解:由正弦定理及已知条件有:,得,∵,‎ ‎∴,∴或,‎ 当时,,‎ ‎∴‎ 当时,,‎ ‎∴‎ 点评:两边和其中一边对角已知,容易求出另一边所对的角,从而三个角都可以求出。由于正弦函数在不是单调的,故要注意多解情况。‎ 三、判定三角形形状 例3、在△ABC中,若·=·成立,试判断这个三角形形状。‎ 解:用正弦定理,得:·=·,‎ ‎·=·,∴,即,根据三角形内角和定理,知、必都为锐角。所以A=B,即△ABC是等腰三角形。‎ 点评:由已知条件确定三角形的形状,主要通过两个途径:①化角为边,通过代数式变形求出边与边之间关系。②化边为角,利用三角恒等变形找出角与角之间关系。一般情况下,利用三角恒等变形计算量会小一些。‎ 四、证明三角形中的三角恒等式 例4、在△ABC中,角A,B,C的对边分别为a,b,c,证明:.‎ 证明:由正弦定理得:‎ ‎.‎ ‎=‎ ‎==.‎ 所以,.‎ 点评:由于不等式两边一边是代数式,一边是三角式,故通过正弦定理来把边全化为角,把证明转化为三角恒等变形的问题。 ‎ 五、处理实际问题 例5在某点B测得建筑物AE的顶端A的仰角为,沿BE方向前进30米,到点C处测得顶端A的仰角为,再继续前进米到点D点,顶端A的仰角为,求的大小和建筑物AE的高。‎ 解:如图所示,在中,,‎ ‎,‎ ‎,因为,,得 ‎,在中,,‎ 所以所求角为,建筑物高为15米。‎ A B C D E ‎2‎ ‎4‎ 点评:本题关键在于把实际问题中的已知和所求的量用图形表示出来,把问题转化为三角函数的问题,再运用正弦正理解之。‎