2017贵州高考数学理科 5页

  • 328.00 KB
  • 2021-05-13 发布

2017贵州高考数学理科

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
绝密★启用前 ‎2017年普通高等学校招生全国统一考试(新课标Ⅲ)‎ 理科数学 注意事项:‎ ‎1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。‎ ‎2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。‎ ‎3.考试结束后,将本试卷和答题卡一并交回。‎ 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1.已知集合A= ,B=,则AB中元素的个数为 ‎ A.3 B.2 C.1 D.0‎ ‎2.设复数z满足(1+i)z=2i,则∣z∣=‎ A. B. C. D.2‎ ‎3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.‎ 根据该折线图,下列结论错误的是 A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大学*科网致在7,8月份 D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 ‎4.(+)(2-)5的展开式中33的系数为 ‎ A.-80 B.-40 C.40 D.80‎ ‎5.已知双曲线C (a>0,b>0)的一条渐近线方程为,且与椭圆 有公共焦点,则C的方程为 A. B. C. D. ‎ ‎6.设函数f(x)=cos(x+),则下列结论错误的是 A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线x=对称 C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减 ‎7.执行右面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为 A.5‎ B.4‎ C.3‎ D.2‎ ‎8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A. B. C. D.‎ ‎9.等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则 前6项的和为 A.-24 B.-3 C.3 D.8‎ ‎10.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为 A. B. C. D.‎ ‎11.已知函数有唯一零点,则a=‎ A. B. C. D.1‎ ‎12. 在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= +,则+的最大值为 A.3 B. 2 C. D.2‎ 二、填空题:本题共4小题,每小题5分,共20分。‎ ‎13. 若,满足约束条件,则的最小值为__________.‎ ‎14. 设等比数列 an 满足a1 + a2 = –1, a1 – a3 = –3,则a4 = ___________.‎ ‎15.设函数则满足的x的取值范围是_________。‎ ‎16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:‎ ‎①当直线AB与a成60°角时,AB与b成30°角;‎ ‎②当直线AB与a成60°角时,AB与b成60°角;‎ ‎③直线AB与a所称角的最小值为45°;‎ ‎④直线AB与a所称角的最小值为60°;‎ 其中正确的是________。(填写所有正确结论的编号)‎ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。‎ ‎(一)必考题:60分。‎ ‎17.(12分)‎ ‎△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2,b=2.‎ ‎(1)求c;‎ ‎(2)设D为BC边上一点,且AD AC,求△ABD的面积.‎ ‎18.(12分)‎ 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处学科#网理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:‎ 最高气温 ‎[10,15)‎ ‎[15,20)‎ ‎[20,25)‎ ‎[25,30)‎ ‎[30,35)‎ ‎[35,40)‎ 天数 ‎2‎ ‎16‎ ‎36‎ ‎25‎ ‎7‎ ‎4‎ 以最高气温位于各区间的频率代替最高气温位于该区间的概率。‎ ‎(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;‎ ‎(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?‎ ‎19.(12分)‎ 如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.‎ ‎(1)证明:平面ACD⊥平面ABD;‎ ‎(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD 分成体积相等的两部分,求二面角D–AE–C的余弦值.‎ ‎20.(12分)‎ 已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.‎ ‎(1)证明:坐标原点O在圆M上;‎ ‎(2)设圆M过点P(4,-2),求直线l与圆M的方程.‎ ‎21.(12分)‎ 已知函数 x﹣1﹣alnx.‎ (1) 若 ,求a的值;‎ (2) 设m为整数,且对于任意正整数n, ﹤m,求m最小值.‎ ‎(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。‎ ‎22.[选修4―4:坐标系与参数方程](10分)‎ 在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.‎ ‎(1)写出C的普通方程;‎ ‎(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.‎ ‎23.[选修4—5:不等式选讲](10分)‎ 已知函数f(x)=│x+1│–│x–2│.‎ ‎(1)求不等式f(x)≥1的解集;‎ ‎(2)若不等式f(x)≥x2–x +m的解集非空,求m的取值范围.‎