- 739.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
概率与统计
1.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
2.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(Ⅰ)求x,y ;
(Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
3.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:
(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率;
(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率。
4.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.
5.有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品
编号
直径
1.51
1.49
1.49
1.51
1.49
1.51
1.47
1.46
1.53
1.47
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。
6.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差其中为的平均数)
7. 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概
8.某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X
1
2
3
4
5
f
a
0.2
0.45
b
C
(I)若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a、b、c的值;
(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。
9.(2009广东).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
10.(2010广东)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:w_w*w.k_s_5 u.c*o*m
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?w. k#s5_u.c o*m
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.w_w*w
11.(2011广东)在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n
1
2
3
4
5
成绩xn
70
76
72
70
72
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。
12.(2012广东)某学校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:
,,,,.
(1) 求图中a的值
(2) 根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3) 若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数
之比如下表所示,求数学成绩在之外的人数.
分数段
x:y
1:1
2:1
3:4
4:5
13.(2013广东)从一批苹果中,随机抽取50只,其重量(单位:克)的频数分布表如下:
分组(重量)
频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3)在(2)中抽出的4苹果中,任取2个,求重量在和中各有一个的概率.
概率与统计答案
1.解:(I)一共有8种不同的结果,列举如下:
(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)
(Ⅱ)记“3次摸球所得总分为5”为事件A
事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3
由(I)可知,基本事件总数为8,所以事件A的概率为 w
22
3.解 (Ⅰ)样本中男生人数为40 ,由分层出样比例为10%估计全校男生人数为400。
(Ⅱ)有统计图知,样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170~185cm之间的频率故有f估计该校学生身高在170~180cm之间的概率
(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①②③④
样本中身高在185~190cm之间的男生有2人,设其编号为⑤⑥
从上述6人中任取2人的树状图为:
故从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~190cm之间的可能结果数为9,因此,所求概率
4.
5.(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.
(Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,
,,,共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,,共有6种.
所以P(B)=.
6.解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,
所以平均数为
方差为
(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10
,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A2,B2),(A3,B3),(A1,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4),
用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为
7.解:(I)甲校两男教师分别用A、B表示,女教师用C表示;
乙校男教师用D表示,两女教师分别用E、F表示
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:
(A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种。
从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种,
选出的两名教师性别相同的概率为
(II)从甲校和乙校报名的教师中任选2名的所有可能的结果为:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),
(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,
从中选出两名教师来自同一学校的结果有:
(A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种,
选出的两名教师来自同一学校的概率为
8. 解:(I)由频率分布表得,
因为抽取的20件日用品中,等级系数为4的恰有3件,
所以
等级系数为5的恰有2件,所以,
从而
所以
(II)从日用品中任取两件,
所有可能的结果为:
,
设事件A表示“从日用品中任取两件,其等级系数相等”,则A包含的基本事件为:
共4个,
又基本事件的总数为10,
故所求的概率
9.【解析】(1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班;
(2)
甲班的样本方差为
=57
(3)设身高为176cm的同学被抽中的事件为A;
从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173) (181,176)
(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)
(178, 176) (176,173)共10个基本事件,而事件A含有4个基本事件;
;
10.解:(1)画出二维条形图,通过分析数据的图形,或者联列表的对角线的乘积的差的绝对值来分析,得到的直观印象是收看新闻节目的观众与年龄有关;
(2)在100名电视观众中,收看新闻的观众共有45人,其中20至40岁的观众有18人,大于40岁的观众共有27人。
故按分层抽样方法,在应在大于40岁的观众中中抽取人.
(3)法一:由(2)可知,抽取的5人中,年龄大于40岁的有3人,分别记作1,2,3;20岁至40岁的观众有2人,分别高为,若从5人中任取2名观众记作,则包含的总的基本事件有:共10个。其中恰有1名观众的年龄为20岁至40岁包含的基本事件有:共6个.
故(“恰有1名观众的年龄为20至40岁”)=
11.解:(1)
,
(2)从5位同学中随机选取2位同学,共有如下10种不同的取法:
{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},
选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种取法:
{1,2},{2,3},{2,4},{2,5},
故所求概率为
12.解(1):
(2):50-60段语文成绩的人数为:3.5分
60-70段语文成绩的人数为:4分
70-80段语文成绩的人数为:
80-90段语文成绩的人数为:
90-100段语文成绩的人数为:
(3):依题意:
50-60段数学成绩的人数=50-60段语文成绩的人数为=5人………………………………9分
60-70段数学成绩的的人数为= 50-60段语文成绩的人数的一半=……10分
70-80段数学成绩的的人数为= ………………………………………11分
80-90段数学成绩的的人数为= ………………………………………12分
90-100段数学成绩的的人数为=……………………13分
13.解:(1)抽取的苹果总数为50个,重量在[ 90,95)的苹果有20个,所以苹果重量在[ 90,95)的频率= = =0.4
(2)重量在[ 80,85)的苹果数= ×4=1(个)
(3)重量在[ 95,100)的苹果数= ×4=3(个)
记重量在[ 80,85)的1个苹果为A,重量在[ 95,100)的三个苹果分别是B1,B2,B3。
在这四个苹果中任取两个,包括6个基本事件,分别是:
A和B1、 A和B2、 A和B3、 B1和B2、 B1和B3、 B2和B3
符合要求的基本事件有:A和B1、 A和B2、 A和B3 ,共3个,
所以重量在[ 80,85)和[ 95,100)中各有一个的概率P= =