- 2.03 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
四、立体几何
一、选择题
1.(重庆理9)高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为
A. B. C.1 D.
【答案】C
2.(浙江理4)下列命题中错误的是
A.如果平面,那么平面内一定存在直线平行于平面
B.如果平面α不垂直于平面,那么平面内一定不存在直线垂直于平面
C.如果平面,平面,,那么
D.如果平面,那么平面内所有直线都垂直于平面
【答案】D
3.(四川理3),,是空间三条不同的直线,则下列命题正确的是
A.,
B.,
C.,,共面
D.,,共点,,共面
【答案】B
【解析】A答案还有异面或者相交,C、D不一定
4.(陕西理5)某几何体的三视图如图所示,则它的体积是
A. B. C. D.
【答案】A
5.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是
【答案】D
6.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①
存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)
视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其
中真命题的个数是
A.3 B.2
C.1 D.0
【答案】A
7.(全国新课标理6)。在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为
【答案】D
8.(全国大纲理6)已知直二面角α− ι−β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于
A. B. C. D.1
【答案】C
9.(全国大纲理11)已知平面α截一球面得圆M,过圆心M且与α成二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4,则圆N的面积为
3
3
2
正视图
侧视图
俯视图
图1
A.7 B.9 C.11 D.13
【答案】D
10.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为
A. B.
C. D.
【答案】B
11.(江西理8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】C
12.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为
A. B. C. D.
【答案】B
13.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是
A.8 B. C.10 D.
【答案】C
14.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为
(A)48
(B)32+8
(C)48+8
(D)80
【答案】C
15.(辽宁理8)。如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是
(A)AC⊥SB
(B)AB∥平面SCD
(C)SA与平面SBD所成的角等于SC与平面SBD所成的角
(D)AB与SC所成的角等于DC与SA所成的角
【答案】D
16.(辽宁理12)。已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S—ABC的体积为
(A) (B) (C) (D)1
【答案】C
17.(上海理17)设是空间中给定的5个不同的点,则使
成立的点的个数为
A.0 B.1 C.5 D.10
【答案】B
二、填空题
18.(上海理7)若圆锥的侧面积为,底面积为,则该圆锥的体积为 。
【答案】
19.(四川理15)如图,半径为R的球O中有一内接圆柱.当圆柱的侧
面积最大是,求的表面积与改圆柱的侧面积之差是 .
【答案】
【解析】时,
,则
20.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 .
【答案】
21.(天津理10)一个几何体的三视图如右图所示(单位:),则该几何体的体积为
__________
【答案】
22.(全国新课标理15)。已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD的体积为_____________.
【答案】
23.(湖北理14)如图,直角坐标系所在的平面为,直角坐标系(其中轴一与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的
坐标为 (2,2) ;
(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
【答案】
24.(福建理12)三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于______。
【答案】
三、解答题
25.(江苏16)如图,在四棱锥中,平面PAD⊥平面
ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
本题主要考查直线与平面、平面与平面的位置关系,考察空间想象能力和推理论证能力。满分14分。
证明:(1)在△PAD中,因为E、F分别为
AP,AD的中点,所以EF//PD.
又因为EF平面PCD,PD平面PCD,
所以直线EF//平面PCD.
(2)连结DB,因为AB=AD,∠BAD=60°,
所以△ABD为正三角形,因为F是AD的
中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,
BF平面ABCD,平面PAD平面ABCD=AD,所以BF⊥平面PAD。又因为
BF平面BEF,所以平面BEF⊥平面PAD.
26.(安徽理17)
如图,为多面体,平面与平面垂直,点在线段上,△OAB,,△,△,△都是正三角形。
(Ⅰ)证明直线∥;
(II)求棱锥F—OBED的体积。
本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.
(I)(综合法)
证明:设G是线段DA与EB延长线的交点. 由于△OAB与△ODE都是正三角形,所以
=
∥,OG=OD=2,
同理,设是线段DA与线段FC延长线的交点,有
又由于G和都在线段DA的延长线上,所以G与重合.
=
=
在△GED和△GFD中,由=
∥和OC∥,可知B和C分别是GE和GF的中点,所以BC是△GEF的中位线,故BC∥EF.
(向量法)
过点F作,交AD于点Q,连QE,由平面ABED⊥平面ADFC,知FQ⊥平面ABED,以Q为坐标原点,为轴正向,为y轴正向,为z轴正向,建立如图所示空间直角坐标系.
由条件知
则有
所以即得BC∥EF.
(II)解:由OB=1,OE=2,,而△OED是边长为2的正三角形,故
所以
过点F作FQ⊥AD,交AD于点Q,由平面ABED⊥平面ACFD知,FQ就是四棱锥F—OBED的高,且FQ=,所以
27.(北京理16)
如图,在四棱锥中,平面,底面是菱形,.
(Ⅰ)求证:平面
(Ⅱ)若求与所成角的余弦值;
(Ⅲ)当平面与平面垂直时,求的长.
证明:(Ⅰ)因为四边形ABCD是菱形,
所以AC⊥BD.
又因为PA⊥平面ABCD.
所以PA⊥BD.
所以BD⊥平面PAC.
(Ⅱ)设AC∩BD=O.
因为∠BAD=60°,PA=PB=2,
所以BO=1,AO=CO=.
如图,以O为坐标原点,建立空间直角坐标系O—xyz,则
P(0,—,2),A(0,—,0),B(1,0,0),C(0,,0).
所以
设PB与AC所成角为,则
.
(Ⅲ)由(Ⅱ)知
设P(0,-,t)(t>0),
则
设平面PBC的法向量,
则
所以
令则
所以
同理,平面PDC的法向量
因为平面PCB⊥平面PDC,
所以=0,即
解得
所以PA=
28.(福建理20)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,.
(I)求证:平面PAB⊥平面PAD;
(II)设AB=AP.
(i)若直线PB与平面PCD所成的角为,求线段AB的长;
(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理
由。
本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。
解法一:
(I)因为平面ABCD,
平面ABCD,
所以,
又
所以平面PAD。
又平面PAB,所以平面平面PAD。
(II)以A为坐标原点,建立空间直角坐标系
A—xyz(如图)
在平面ABCD内,作CE//AB交AD于点E,则
在中,DE=,
设AB=AP=t,则B(t,0,0),P(0,0,t)
由AB+AD=4,得AD=4-t,
所以,
(i)设平面PCD的法向量为,
由,,得
取,得平面PCD的一个法向量,
又,故由直线PB与平面PCD所成的角为,得
解得(舍去,因为AD),所以
(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,
设G(0,m,0)(其中)
则,
由得,(2)
由(1)、(2)消去t,化简得(3)
由于方程(3)没有实数根,所以在线段AD上不存在一个点G,
使得点G到点P,C,D的距离都相等。
从而,在线段AD上不存在一个点G,
使得点G到点P,B,C,D的距离都相等。
解法二:
(I)同解法一。
(II)(i)以A为坐标原点,建立空间直角坐标系A—xyz(如图)
在平面ABCD内,作CE//AB交AD于E,
则。
在平面ABCD内,作CE//AB交AD于点E,则
在中,DE=,
设AB=AP=t,则B(t,0,0),P(0,0,t)
由AB+AD=4,得AD=4-t,
所以,
设平面PCD的法向量为,
由,,得
取,得平面PCD的一个法向量,
又,故由直线PB与平面PCD所成的角为,得
解得(舍去,因为AD),
所以
(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,
由GC=CD,得,
从而,即
设
,
在中,
这与GB=GD矛盾。
所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,
从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。
29.(广东理18)
如图5.在椎体P-ABCD中,ABCD是边长为1的棱形,
且∠DAB=60,,PB=2,
E,F分别是BC,PC的中点.
(1) 证明:AD 平面DEF;
(2) 求二面角P-AD-B的余弦值.
法一:(1)证明:取AD中点G,连接PG,BG,BD。
因PA=PD,有,在中,,有为
等边三角形,因此,所以
平面PBG
又PB//EF,得,而DE//GB得AD DE,又,所以
AD 平面DEF。
(2),
为二面角P—AD—B的平面角,
在
在
法二:(1)取AD中点为G,因为
又为等边三角形,因此,,
从而平面PBG。
延长BG到O且使得PO OB,又平面PBG,PO AD,
所以PO 平面ABCD。
以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为轴,z轴,平行于AD的直线为轴,建立如图所示空间直角坐标系。
设
由于
得
平面DEF。
(2)
取平面ABD的法向量
设平面PAD的法向量
由
取
30.(湖北理18)
如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当=1时,求证:⊥;
(Ⅱ)设二面角的大小为,求的最小值.
本小题主要考查空间直线与平面的位置关系和二面角等基础知识,同时考查空间想象能力、推理论证能力和运算求解能力。(满分12分)
解法1:过E作于N,连结EF。
(I)如图1,连结NF、AC1,由直棱柱的性质知,
底面ABC侧面A1C。
又度面侧面A,C=AC,且底面ABC,
所以侧面A1C,NF为EF在侧面A1C内的射影,
在中,=1,
则由,得NF//AC1,
又故。
由三垂线定理知
(II)如图2,连结AF,过N作于M,连结ME。
由(I)知侧面A1C,根据三垂线定理得
所以是二面角C—AF—E的平面角,即,
设
在中,
在
故
又
故当时,达到最小值;
,此时F与C1重合。
解法2:(I)建立如图3所示的空间直角坐标系,则由已知可得
于是
则
故
(II)设,
平面AEF的一个法向量为,
则由(I)得F(0,4,)
,于是由可得
取
又由直三棱柱的性质可取侧面AC1的一个法向量为,
于是由为锐角可得,
所以,
由,得,即
故当,即点F与点C1重合时,取得最小值
31.(湖南理19)
如图5,在圆锥中,已知=,⊙O的直径,是的中点,为的中点.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的余弦值。
解法1:连结OC,因为
又底面⊙O,AC底面⊙O,所以,
因为OD,PO是平面POD内的两条相交直线,所以平面POD,
而平面PAC,所以平面POD平面PAC。
(II)在平面POD中,过O作于H,由(I)知,平面
所以平面PAC,又面PAC,所以
在平面PAO中,过O作于G,
连接HG,
则有平面OGH,
从而,故为二面角B—PA—C的平面角。
在
在
在
在
所以
故二面角B—PA—C的余弦值为
解法2:(I)如图所示,以O为坐标原点,OB、OC、OP所在直线分别为x轴、y轴,z轴建立空间直角坐标系,则
,
设是平面POD的一个法向量,
则由,得
所以
设是平面PAC的一个法向量,
则由,
得
所以
得。
因为
所以从而平面平面PAC。
(II)因为y轴平面PAB,所以平面PAB的一个法向量为
由(I)知,平面PAC的一个法向量为
设向量的夹角为,则
由图可知,二面角B—PA—C的平面角与相等,
所以二面角B—PA—C的余弦值为
32.(辽宁理18)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)证明:平面PQC⊥平面DCQ;
(II)求二面角Q—BP—C的余弦值.
解:
如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D—xyz.
(I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).
则
所以
即PQ⊥DQ,PQ⊥DC.
故PQ⊥平面DCQ.
又PQ平面PQC,所以平面PQC⊥平面DCQ. …………6分
(II)依题意有B(1,0,1),
设是平面PBC的法向量,则
因此可取
设m是平面PBQ的法向量,则
可取
故二面角Q—BP—C的余弦值为 ………………12分
33.(全国大纲理19)
如图,四棱锥中, ,,侧面为等边三角形,.
(Ⅰ)证明:;
(Ⅱ)求与平面所成角的大小.
解法一:
(I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,
连结SE,则
又SD=1,故,
所以为直角。 …………3分
由,
得平面SDE,所以。
SD与两条相交直线AB、SE都垂直。
所以平面SAB。 …………6分
(II)由平面SDE知,
平面平面SED。
作垂足为F,则SF平面ABCD,
作,垂足为G,则FG=DC=1。
连结SG,则,
又,
故平面SFG,平面SBC平面SFG。 …………9分
作,H为垂足,则平面SBC。
,即F到平面SBC的距离为
由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有
设AB与平面SBC所成的角为α,
则 …………12分
解法二:
以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系C—xyz。
设D(1,0,0),则A(2,2,0)、B(0,2,0)。
又设
(I),,
由得
故x=1。
由
又由
即 …………3分
于是,
故
所以平面SAB。 …………6分
(II)设平面SBC的法向量,
则
又
故 …………9分
取p=2得。
故AB与平面SBC所成的角为
34.(全国新课标理18)
如图,四棱锥中,底面ABCD为平行四边形,
,,底面ABCD.
(I)证明:;
(II)若PD=AD,求二面角A-PB-C的余弦值.
解:
(Ⅰ)因为, 由余弦定理得
从而BD2+AD2= AB2,故BDAD
又PD底面ABCD,可得BDPD
所以BD平面PAD. 故 PABD
(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则
,,,.
设平面PAB的法向量为n=(x,y,z),则
即
因此可取n=
设平面PBC的法向量为m,则
可取m=(0,-1,)
故二面角A-PB-C的余弦值为
35.(山东理19)
在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EA⊥平面ABCD,
EF∥AB,FG∥BC,EG∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
19.(I)证法一:
因为EF//AB,FG//BC,EG//AC,,
所以∽
由于AB=2EF,
因此,BC=2FC,
连接AF,由于FG//BC,
在中,M是线段AD的中点,
则AM//BC,且
因此FG//AM且FG=AM,
所以四边形AFGM为平行四边形,
因此GM//FA。
又平面ABFE,平面ABFE,
所以GM//平面AB。
证法二:
因为EF//AB,FG//BC,EG//AC,,
所以∽
由于AB=2EF,
因此,BC=2FC,
取BC的中点N,连接GN,
因此四边形BNGF为平行四边形,
所以GN//FB,
在中,M是线段AD的中点,连接MN,
则MN//AB,
因为
所以平面GMN//平面ABFE。
又平面GMN,
所以GM//平面ABFE。
(II)解法一:
因为,
又平面ABCD,
所以AC,AD,AE两两垂直,
分别以AC,AD,AE所在直线为x轴、y轴和z轴,建立如图所法的空间直角坐标系,
不妨设
则由题意得A(0,0,0,),B(2,-2,0),C(2,0,0,),E(0,0,1),
所以
又
所以
设平面BFC的法向量为
则
所以取
所以
设平面ABF的法向量为,
则
所以
则,
所以
因此二面角A—BF—C的大小为
解法二:
由题意知,平面平面ABCD,
取AB的中点H,连接CH,
因为AC=BC,
所以,
则平面ABFE,
过H向BF引垂线交BF于R,连接CR,
则
所以为二面角A—BF—C的平面角。
由题意,不妨设AC=BC=2AE=2。
在直角梯形ABFE中,连接FH,
则,又
所以
因此在中,
由于
所以在中 ,
因此二面角A—BF—C的大小为
36.(陕西理16)
如图,在中,是上的高,沿把折起,使。
(Ⅰ)证明:平面ADB ⊥平面BDC;
(Ⅱ)设E为BC的中点,求与夹角的余弦值。
解(Ⅰ)∵折起前AD是BC边上的高,
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,
又DBDC=D,
∴AD⊥平面BDC,
∵AD 平面平面BDC.
平面ABD平面BDC。
(Ⅱ)由∠ BDC=及(Ⅰ)知DA,DB,DC两两垂直,不防设=1,以D为坐标原点,以所在直线轴建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,,0),
=,
=(1,0,0,),
与夹角的余弦值为
<,>=.
37.(上海理21) 已知是底面边长为1的正四棱柱,是和的交点。
(1)设与底面所成的角的大小为,二面角的大小为。
求证:;
(2)若点到平面的距离为,求正四棱柱的高。
解:设正四棱柱的高为。
⑴ 连,底面于,
∴ 与底面所成的角为,即
∵ ,为中点,∴,又,
∴ 是二面角的平面角,即
∴ ,。
⑵ 建立如图空间直角坐标系,有
设平面的一个法向量为,
∵ ,取得
∴ 点到平面的距离为,则。
38.(四川理19)
如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
.解析:(1)连接交于,,
,又为的中点,
中点,,,D为的中点。
(2)由题意,过B 作,连接,则
,为二面角的平面角。在中,
,则
(3)因为,所以,
,
在中,,
39.(天津理17) 如图,在三棱柱中,
是正方形的中心,,平面,且
(Ⅰ)求异面直线AC与A1B1所成角的余弦值;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱的中点,点在平面内,且平面,求线段的长.
本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.
方法一:如图所示,建立空间直角坐标系,点B为坐标原点.
依题意得
(I)解:易得,
于是
所以异面直线AC与A1B1所成角的余弦值为
(II)解:易知
设平面AA1C1的法向量,
则即
不妨令可得,
同样地,设平面A1B1C1的法向量,
则即不妨令,
可得
于是
从而
所以二面角A—A1C1—B的正弦值为
(III)解:由N为棱B1C1的中点,
得设M(a,b,0),
则
由平面A1B1C1,得
即
解得故
因此,所以线段BM的长为
方法二:
(I)解:由于AC//A1C1,故是异面直线AC与A1B1所成的角.
因为平面AA1B1B,又H为正方形AA1B1B的中心,
可得
因此
所以异面直线AC与A1B1所成角的余弦值为
(II)解:连接AC1,易知AC1=B1C1,
又由于AA1=B1A1,A1C1=A1=C1,
所以≌,过点A作于点R,
连接B1R,于是,故为二面角A—A1C1—B1的平面角.
在中,
连接AB1,在中,
,
从而
所以二面角A—A1C1—B1的正弦值为
(III)解:因为平面A1B1C1,所以
取HB1中点D,连接ND,由于N是棱B1C1中点,
所以ND//C1H且.
又平面AA1B1B,
所以平面AA1B1B,故
又
所以平面MND,连接MD并延长交A1B1于点E,
则
由
得,延长EM交AB于点F,
可得连接NE.
在中,
所以
可得
连接BM,在中,
40.(浙江理20)
如图,在三棱锥中,,D为BC的中点,PO⊥平面ABC,垂足O落在
线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM
的长;若不存在,请说明理由。
本题主要考查空是点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。满分15分。
方法一:
(I)证明:如图,以O为原点,以射线OP为z轴的正半轴,
建立空间直角坐标系O—xyz
则,
,由此可得,所以
,即
(II)解:设
设平面BMC的法向量,
平面APC的法向量
由
得
即
由即
得
由
解得,故AM=3。
综上所述,存在点M符合题意,AM=3。
方法二:
(I)证明:由AB=AC,D是BC的中点,得
又平面ABC,得
因为,所以平面PAD,
故
(II)解:如图,在平面PAB内作于M,连CM,
由(I)中知,得平面BMC,
又平面APC,所以平面BMC平面APC。
在
在,
在
所以
在
又
从而PM,所以AM=PA-PM=3。
综上所述,存在点M符合题意,AM=3。
41.(重庆理19)
如题(19)图,在四面体中,平面平面,,,.
(Ⅰ)若,,求四面体的体积;
(Ⅱ)若二面角为,求异面直线与所成角的余弦值.
(I)解:如答(19)图1,设F为AC的中点,由于AD=CD,所以DF⊥AC.
故由平面ABC⊥平面ACD,知DF⊥平面ABC,
即DF是四面体ABCD的面ABC上的高,
且DF=ADsin30°=1,AF=ADcos30°=.
在Rt△ABC中,因AC=2AF=,AB=2BC,
由勾股定理易知
故四面体ABCD的体积
(II)解法一:如答(19)图1,设G,H分别为边CD,BD的中点,则FG//AD,GH//BC,从而∠FGH是异面直线AD与BC所成的角或其补角.
设E为边AB的中点,则EF//BC,由AB⊥BC,知EF⊥AB.又由(I)有DF⊥平面ABC,
故由三垂线定理知DE⊥AB.
所以∠DEF为二面角C—AB—D的平面角,由题设知∠DEF=60°
设
在
从而
因Rt△ADE≌Rt△BDE,故BD=AD=a,从而,在Rt△BDF中,,
又从而在△FGH中,因FG=FH,由余弦定理得
因此,异面直线AD与BC所成角的余弦值为
解法二:如答(19)图2,过F作FM⊥AC,交AB于M,已知AD=CD,
平面ABC⊥平面ACD,易知FC,FD,FM两两垂直,以F为原点,射线FM,FC,FD分别为x轴,y轴,z轴的正半轴,建立空间直角坐标系F—xyz.
不妨设AD=2,由CD=AD,∠CAD=30°,易知点A,C,D的坐标分别为
显然向量是平面ABC的法向量.
已知二面角C—AB—D为60°,
故可取平面ABD的单位法向量,
使得
设点B的坐标为,有
易知与坐标系的建立方式不合,舍去.
因此点B的坐标为所以
从而
故异面直线AD与BC所成的角的余弦值为