- 1.01 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
考点25 数列求和及综合应用
一、选择题
1. (2013·新课标Ⅰ高考理科·T12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,…若b1>c1,b1+c1=2a1,an+1=an,bn+1=,cn+1=,则( )
A、{Sn}为递减数列
B、{Sn}为递增数列
C、{S2n-1}为递增数列,{S2n}为递减数列
D、{S2n-1}为递减数列,{S2n}为递增数列
【解析】选B.因为,,,所以,
,注意到,所以.
于是中,边长为定值,另两边的长度之和为为定值.
因为,
所以,当时,有,即,于是的边的高随增大而增大,于是其面积为递增数列.
二、填空题
2.(2013·新课标Ⅰ高考理科·T14)若数列的前项和,则的通项公式是_________
【解题指南】先利用S1=a1求出a1的值,再利用Sn-Sn-1=an求出通项公式an.
【解析】由,解得,又,所以,得 ,所以数列是首项为1,公比为
的等比数列.故数列的通项公式
【答案】
3. (2013·湖南高考理科·T15)
设为数列的前n项和,则
(1)_____;
(2)___________.
【解题指南】(1) 令,代入 即可得到答案.
(2)通过整理可发现当当为偶数时有,于是代入第(2)问的展开式即可得到答案.
【解析】(1)因为,所以, ①,
,即 ②, 把②代入①得.
(2)因为当时,,整理得,所以,当为偶数时,,
当为奇数时,,所以,
所以,所以当为偶数时,,
所以
.
【答案】(1) (2)
4. (2013·重庆高考理科·T12)已知是等差数列,,公差,为其前
项和,若、、成等比数列,则
【解题指南】先根据、、成等比数列求出数列的公差,然后根据公式求出.
【解析】因为、、成等1比数列, 所以,化简得
因为,所以,故
【答案】
三、解答题
5.(2013·大纲版全国卷高考理科·T22)已知函数
(I)若;
(II)设数列
【解析】(I),
令,即,解得或
若,则时, ,所以.
若,则时,,,所以.
综上的最小值为.
(II)令,由(I)知,时,.
即.
取,则.
于是.
所以
6.(2013·浙江高考文科·T19)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3
成等比数列.
(1)求d,an.
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
【解题指南】(1)由a1,2a2+2,5a3成等比数列可以求得a1与d的关系,进而可求得d与an.
(2)由d<0,先判断该数列从第几项开始大于零,从第几项开始小于零,再根据等差数列前n项和的性质求解.
【解析】(1)由题意得,5a3·a1=(2a2+2)2,
d2-3d-4=0,解得d=-1或d=4,所以an=-n+11或an=4n+6.
(2)设数列{an}前n项和为Sn,
因为d<0,所以d=-1,an=-n+11,则
n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-n2+n;
n≥12时,|a1|+|a2|+…+|a11|+|a12|+…+|an|=a1+a2+…+a11-a12-…-an=S11-(Sn-S11)= -Sn+2S11=n2-n +110.
综上所述,|a1|+|a2|+…+|an|=
7. (2013·重庆高考文科·T16)设数列满足:,,.
(Ⅰ)求的通项公式及前项和;
(Ⅱ)已知是等差数列,为前项和,且,,求.
【解题指南】直接根据递推关系可求出数列的通项公式及前项和,再利用题目中所给条件求解.
【解析】(Ⅰ)由题设知是首项为公比为的等比数列,所以,
(Ⅱ)所以公差,
故.
8.(2013·上海高考理科·T23)给定常数c>0,定义函数f(x)=2|x+c+4|-|x+c|.数列a1,a2,a3,…,满足an+1=f(an),n∈N*.
(1)若a1=-c-2,求a2及a3.
(2)求证:对任意n∈N*,an+1-an≥c.
(3)是否存在a1,使得a1,a2,…,an,…,成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.
【解析】(1)a2=2,a3=c+10.
(2)f(x)=
当an≥-c时,an+1-an=c+8>c.
当-c-4≤an<-c时,an+1-an=2an+3c+8≥2(-c-4)+3c+8=c;
当an<-c-4时,an+1-an=-2an-c-8>-2(-c-4)-c-8=c;
所以,对任意n∈N*,an+1-an≥c.
(3)由(2),结合c>0,得an+1>an,即{an}为无穷递增数列,
又{an}为等差数列,所以存在正数M,当n>M时,an>-c,
从而an+1=f(an)=an+c+8,
由于{an}为等差数列,因此其公差d=c+8.
①若a1<-c-4,则a2=f(a1)=-a1-c-8,
又a2=a1+d=a1+c+8,故-a1-c-8=a1+c+8,
即a1=-c-8,从而a2=0,
当n≥2时,由于{an}为递增数列,故an≥a2=0>-c,所以an+1=f(an)=an+c+8,
而a2=a1+c+8,故当a1=-c-8时,{an}为无穷等差数列,符合要求.
②若-c-4≤a1<-c,则a2=f(a1)=3a1+3c+8,
又a2=a1+d=a1+c+8,所以,3a1+3c+8=a1+c+8,得a1=-c,舍去.
③若a1≥-c,则由an≥a1得到an+1=f(an)=an+c+8,
从而{an}为无穷等差数列,符合要求.
综上a1的取值集合为{-c-8}∪[-c,+∞).
9.(2013·上海高考文科·T22)已知函数,无穷数列满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值.
(3)是否存在a1,使得a1,a2,…,an…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.
【解析】(1)a2=2,a3=0,a4=2.
(2)a2=2-|a1|=2-a1,a3=2-|a2|=2-|2-a1|.
①当02时,a3=2-(a1-2)=4-a1,
所以a1(4-a1)=(2-a1)2,
得a1=2-(舍去)或a1=2+.
综合①②得a1=1或a1=2+.
(3)假设这样的等差数列存在,那么a2=2-|a1|,a3=2-|2-|a1||.
由2a2=a1+a3得2-a1+|2-|a1||=2|a1|(*).
以下分情况讨论:
①当a1>2时,由(*)得a1=0,与a1>2矛盾;
②当00,
因此存在m≥2使得am=a1+2(m-1)>2.
此时d=am+1-am=2-|am|-am<0,矛盾.
综合①②③可知,当且仅当a1=1时,a1,a2,a3,…,构成等差数列.
10. (2013·江苏高考数学科·T19)设是首项为,公差为的等差数列,是其前项和。记,,其中为实数。
(1)若,且成等比数列,证明:();
(2)若是等差数列,证明:。
【解题指南】利用条件,且成等比数列,求出,再代入证明(2)利用条件是等差数列建立与c有关方程。
【证明】由题设知,Sn=na+d.
(1)若,得.又因为b1,b2,b4成等比数列,所以,
即:,化简得d2-2ad=0.因为d≠0,所以d=2a.
因此,对于所有的m∈N*,有Sm=m2a.
从而对于所有的k,n∈N*,有Snk=(nk)2a=n2k2a=n2Sk.
(2)设数列{bn}的公差是d1,则bn=b1+(n-1)d1, n∈N*,
代入Sn的表达式,整理得,对于所有的n∈N*,有+(b1-d1-a+d)n2+cd1n=c(d1-b1).
令A=d1-d,B=b1-d1-a+d,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D. (*)
在(*)式中分别取n=1,2,3,4,得
A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,
从而有
由(2)(3)得A=0,cd1=-5B,代入方程(1),得B=0,从而cd1=0.
即d1-d=0,b1-d1-a+d=0,cd1=0.
若d1=0,则由d1-d=0,得d=0,与题设矛盾,所以d1≠0.
又因为cd1=0,所以c=0.
11.(2013·湖南高考文科·T19)设为数列{}的前项和,已知,2,N
(Ⅰ)求,,并求数列{}的通项公式;
(Ⅱ) 求数列{}的前项和。
【解题指南】(Ⅰ)本题是利用递推关系 求数列的通项公式 ;(Ⅱ)根据第(Ⅰ)问可知应利用错位相减法求数列前n项和.
【解析】(Ⅰ)令,得,因为,所以,
令,得,解得。当时,由
,两式相减,整理得,于是数列是首项为1,公比为2的等比数列,所以,。
(Ⅱ)由(I )知,记其前项和为,于是
①
②
① -②得
从而
12.(2013·江西高考理科·T17)正项数列{an}的前n项和Sn满足:
(1)求数列{an}的通项公式an.
(2)令,数列{bn}的前n项和为Tn.证明:对于任意,都有.
【解题指南】(1)由题目中的等式求出,然后由求an;(2)化简,观察结构特征,选取求和的方法求Tn.
【解析】(1)由得
由于是正项数列,所以.于是,当时,=,又因为符合上式.综上,数列的通项公式为.
(2)因为,,所以.
则
.
13.(2013·江西高考文科·T16)正项数列{an}满足.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.
【解题指南】借助二次三项式的因式分解来求,分析{bn}通项公式的特点选择正确的求和方法.
【解析】(1)由,得.由于{an}是正项数列,所以.
(2)由,bn=,则
所以.
14.(2013·福建高考文科·T17)已知等差数列的公差d=1,前n项和为Sn.
(1)若1,a1,a3成等比数列,求a1.
(2)若S5>a1a9,求a1的取值范围.
【解题指南】按等比中项列式,a3用通项表示,求出首项,第(2)问,直接按基本量列式求解.
【解析】(1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,所以=1×(a1+2),即-a1-2=0,解得a1=-1或a1=2.
(2)因为数列{an}的公差d=1,且S5>a1a9,
所以5a1+10>+8a1,
即+3a1-10<0,解得-5
相关文档
- 高考物理常用的二级结论2021-05-138页
- 2015高考数学(文)(离散型随机变量的均2021-05-1310页
- 人教版本高考历史 古代中国的科学2021-05-134页
- 北京市密云区2014高考英语阅读理解2021-05-139页
- 全国高考文科数学试题及答案重庆 2021-05-1310页
- 高考英语一轮复习限时阅读训练72021-05-134页
- 2015高考化学第五章(物质结构 元素2021-05-1313页
- 全国高考英语试题分类汇编 完型填2021-05-1381页
- 高考数学一轮题组训练平面向量的数2021-05-135页
- 2019高考英语知识点总结精华版最全2021-05-13233页