- 165.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年重庆市高考数学试卷(理科)
参考答案与试题解析
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
5.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为( )
A.
B.
C.
D.
8.(5分)(2015•重庆)已知直线l:x+ay﹣1=0(a∈R)是圆C:x2+y2﹣4x﹣2y+1=0的对称轴.过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=( )
A.
2
B.
C.
6
D.
9.(5分)(2015•重庆)若tanα=2tan,则=( )
A.
1
B.
2
C.
3
D.
4
10.(5分)(2015•重庆)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是( )
A.
(﹣1,0)∪(0,1)
B.
(﹣∞,﹣1)∪(1,+∞)
C.
(﹣,0)∪(0,)
D.
(﹣∞,﹣)∪(,+∞)
二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.
13.(5分)(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=
三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.
15.(5分)(2015•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为
,则直线l与曲线C的交点的极坐标为 (2,π) .
四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.
18.(13分)(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣x
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)讨论f(x)在上的单调性.
20.(12分)(2015•重庆)设函数f(x)=(a∈R)
(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.
21.(12分)(2015•重庆)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1
(Ⅰ)若|PF1|=2+|=2﹣,求椭圆的标准方程;
(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.
32015年重庆市高考数学试卷(理科)
参考答案与试题解析
解答:
解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,
所求几何体的体积为:=.
故选:A.
8
解答:
解:圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.
由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).
由于AC==2,CB=R=2,
∴切线的长|AB|===6,
故选:C.
9:
解:tanα=2tan,则==
===========3.
故答案为:3.
10
解答:
解:由题意,A(a,0),B(c,),C(c,﹣),由双曲线的对称性知D在x轴上,
设D(x,0),则由BD⊥AC得,
∴c﹣x=,
∵D到直线BC的距离小于a+,
∴c﹣x=<a+,
∴<c2﹣a2=b2,
∴0<<1,
∴双曲线的渐近线斜率的取值范围是(﹣1,0)∪(0,1).
故选:A.
13
解答:
解:由题意以及正弦定理可知:,即,∠ADB=45°,
A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,
AC=2=.
故答案为:.
15解答:
解:直线l的参数方程为(t为参数),它的直角坐标方程为:x﹣y+2=0;
曲线C的极坐标方程为,
可得它的直角坐标方程为:x2﹣y2=4,x<0.
由,可得x=﹣2,y=0,
交点坐标为(﹣2,0),
它的极坐标为(2,π).
故答案为:(2,π).
18
解答:
解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣sin2x﹣=sin(2x﹣)﹣,
故函数的周期为=π,最大值为1﹣.
(Ⅱ)当x∈ 时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;
当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.
20解答:
解:(I)f′(x)==,
∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.
当a=0时,f(x)=,f′(x)=,
∴f(1)=,f′(1)=,
∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;
(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,
由g(x)=0,解得x1=,x2=.
当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;
当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;
当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.
由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.
因此a的取值范围为:.
解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,
可得a≥,在[3,+∞)上恒成立.
令u(x)=,u′(x)=<0,
∴u(x)在[3,+∞)上单调递减,
∴a≥u(3)=﹣.
因此a的取值范围为:.
21
解答:
解:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|=2++2﹣=4,故a=2,
设椭圆的半焦距为c,由已知PF2⊥PF1,因此2c=|F1F2|==2,即c=,从而b==1,
故所求椭圆的标准方程为.
(Ⅱ)连接F1Q,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,
从而由|PF1|=|PQ|=|PF2|+|QF2|,
有|QF1|=4a﹣2|PF1|,
又由PQ⊥PF1,|PF1|=|PQ|,知|QF1|=|PF1|=4a﹣2|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,
由PF2⊥PF1,知2c=|F1F2|=,因此e=====.