• 383.50 KB
  • 2021-05-13 发布

高考线性规划必考题型非常全

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
线性规划专题 一、命题规律讲解 1、 求线性(非线性)目标函数最值题 2、 求可行域的面积题 3、 求目标函数中参数取值范围题 4、 求约束条件中参数取值范围题 5、 利用线性规划解答应用题 一、线性约束条件下线性函数的最值问题 线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即简单线性规划的最优解。‎ 例1 已知,,求的最大值和最小值 例2已知满足,求z=的最大值和最小值 二、非线性约束条件下线性函数的最值问题 高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解。‎ 例3 已知满足,,求的最大值和最小值 例4 求函数的最大值和最小值。‎ 三、线性约束条件下非线性函数的最值问题 这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解。‎ 例5 已知实数满足不等式组,求的最小值。‎ 例6 实数满足不等式组,求的最小值 四、非线性约束条件下非线性函数的最值问题 在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解。‎ 例7 已知满足,求的最大值和最小值 ‎1. “截距”型考题方法:求交点求最值 在线性约束条件下,求形如的线性目标函数的最值问题,通常转化为求直线在 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.‎ ‎1.【广东卷 理5】已知变量满足约束条件,则的最大值为( )‎ ‎ ‎ ‎2. (辽宁卷 理8)设变量满足,则的最大值为 A.20 B.35 C.45 D.55‎ ‎3.(全国大纲卷 理) 若满足约束条件,则的最小值为 。‎ ‎4.【陕西卷 理14】 设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 .‎ ‎5.【江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 ‎4吨 ‎1.2万元 ‎0.55万元 韭菜 ‎6吨 ‎0.9万元 ‎0.3万元 ‎ 为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )‎ A.50,0 B.30,20 C.20,30 D.0,50‎ ‎6. (四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )‎ A、1800元 B、2400元 C、2800元 D、3100元 ‎2 . “距离”型考题方法:求交点求最值 ‎10.【福建卷 理8】 设不等式组所表示的平面区域是,平面区域是与关于直线对称,对于中的任意一点A与中的任意一点B, 的最小值等于( )‎ A. B.4 C. D.2‎ ‎11.( 北京卷 理2) 设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是 A B C D ‎ ‎3. “斜率”型考题方法:现求交点,再画图 (包括90取两边,不包括90取中间)‎ 当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。‎ ‎12.【高考·福建卷 理8】 若实数x、y满足则的取值范围是 ( )‎ A.(0,1) B. C.(1,+) D.‎ ‎13.(江苏卷 14)已知正数满足:则的取值范围是 . ‎ ‎4.求可行域的面积题 ‎14.【重庆卷 理10】设平面点集,则所表示的平面图形的面积为 A B C D ‎ ‎15.(江苏卷 理10)在平面直角坐标系,已知平面区域 且,则平面区域的面积为 ( )‎ A. B. C. D.‎ ‎16.(·安徽卷 理15) 若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线扫过中的那部分区域的面积为 .‎ ‎17.(安徽卷 理7) 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 ‎(A) (B) (C) (D) ‎ 18. ‎(浙江卷 理17)若,且当时,恒有,则以,b为坐标点所形成的平面区域的面积等于__________.‎ ‎5.求目标函数中参数取值范围题 一、必考知识点讲解 规律方法:目标函数中含有参数时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究.‎ 二、经典例题分析 ‎21.(高考·山东卷 )设二元一次不等式组所表示的平面区域为,使函数的图象过区域的的取值范围是( )‎ A.[1,3] B.[2,] C.[2,9] D.[,9]‎ ‎22.(北京卷 理7)设不等式组 表示的平面区域为D,若指数函数y=的图像上存在区域D上的点,则a 的取值范围是 ‎ A (1,3] B [2,3] C (1,2] D [ 3, ] ‎ ‎25.(·陕西卷 理11)若x,y满足约束条件,目标函数仅在点(1,0)处取得最小值,则a的取值范围是 ( )‎ A.(,2) B.(,2) C. D. ‎ ‎26.(湖南卷 理7)设m>1,在约束条件目标函数z=x+my的最大值小于2,‎ 则m的取值范围为 A. B. C.(1,3) D.‎ ‎6.求约束条件中参数取值范围题 一、必考知识点讲解 规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.‎ 二、经典例题分析 ‎19.(福建卷 )在平面直角坐标系中,若不等式组(为常数)所表示的平面区域内的面积等于2,则的值为 A. -5 B. 1 C. 2 D. 3 ‎ ‎ ‎ ‎20.【福建卷 理9】若直线上存在点满足约束条件,则实数的最大值为( )‎ A. B.1 C. D.2‎ ‎23.(浙江卷 理17)设为实数,若{},则的取值范围是___________.‎ ‎24.(浙江卷 理7) 若实数,满足不等式组且的最大值为9,则实数 A B C 1 D 2‎ ‎7. 其它型考题 ‎27. (山东卷 理12) 设x,y满足约束条件 ,若目标函数 ‎ 的值是最大值为12,则的最小值为( ) ‎ A. B. C. D. 4‎ ‎28. (·安徽卷 理13)设满足约束条件,若目标函数 的最大值为8,则的最小值为________.‎ 1、 利用线性规划解答应用题 ‎. (2012年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )‎ A、1800元 B、2400元 C、2800元 D、3100元