- 2.55 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
(安徽)双曲线的实轴长是(A)2 (B) (C) 4 (D) 4
(福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于A. B.或2 C.2 D.
(湖北)将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则A. n=0 B. n=1 C. n=2 D. n 3
(湖南)设双曲线的渐近线方程为,则的值为( )A.4 B.3 C.2 D.1答案:C
解析:由双曲线方程可知渐近线方程为,故可知。
(江西)若曲线与曲线有四个不同的交点,则实数的取值范围是 ( )
A. B. C. D.
答案:B 曲线表示以为圆心,以1为半径的圆,曲线表示过定点,与圆有两个交点,故也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应,由图可知,m的取值范围应是
10. (江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方
向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这
样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
答案:A 解析:根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M点的轨迹是个大圆,而N点的轨迹是四条线,刚好是M产生的大圆的半径。
(辽宁)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为
A. B.1 C. D.
(全国新)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,为C的实轴长的2倍,则C的离心率为
(A) (B) (C)2 (D)3
(全国新)由曲线,直线及轴所围成的图形的面积为
(A) (B)4 (C) (D)6
(山东)已知双曲线(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为
(A) (B) (C) (D)
(天津)已知抛物线的参数方程为(为参数)若斜率为1的
直线经过抛物线的焦点,且与圆相切,
则=________.
(全国新)在平面直角坐标系中,椭圆的中心为原点,焦点在 轴上,离心率为。过的直线 交于两点,且的周长为16,那么的方程为 。
(辽宁)已知点(2,3)在双曲线C:上,C的焦距为4,则它的离心率为 .
(全国2)曲线y=+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为
(A) (B) (C) (D)1
【思路点拨】利用导数求出点(0,2)切线方程然后分别求出与直线y=0与y=x的交点问题即可解决。
【精讲精析】选A.切线方程是:,在直角坐标系中作出示意图,即得。
(全国2)已知抛物线C:的焦点为F,直线与C交于A,B两点.则=
(A) (B) (C) (D)
【思路点拨】方程联立求出A、B两点后转化为解三角形问题。
【精讲精析】选D.
联立,消y得,解得.
不妨设A在x轴上方,于是A,B的坐标分别为(4,4),(1,-2),
可求,利用余弦定理.
(陕西)设抛物线的顶点在原点,准线方程为,则抛物线的方程是 ( )
(A) (B) (C) (D)
(陕西)设(,),(,),…,(,)是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是【D】
(A)和的相关系数为直线的斜率
(B)和的相关系数在0到1之间
(C)当为偶数时,分布在两侧的样本点的个数一定相同
(D)直线过点
(四川)在抛物线上取横坐标为,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆相切,则抛物线顶点的坐标为
(A) (B) (C) (D)
(浙江)已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则
A. B. C. D.
(重庆)
(重庆)设圆C位于抛物线与直线x=3所围成的封闭区域(包含边界)内,则椭圆半径能取到的最大值为__________
(浙江)设为实数,若则的最大值是 .。
(浙江)设分别为椭圆的左、右焦点,点在椭圆上,若;则点的坐标是 .
(四川)双曲线P到左准线的距离是 .
(全国2)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线.则|AF2| = .
【思路点拨】本题用内角平分线定理及双曲线的定义即可求解。
【精讲精析】6.
由角平分线定理得:,故.
(江西)若椭圆的焦点在x轴上,过点作圆的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .
答案: 解析:设过点(1,)的直线方程为:当斜率存在时,,
根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=,直线与圆方程的联立可以得到切点的坐标(),当斜率不存在时,直线方程为:x=1,根据两点A:(1,0),B:()可以得到直线:2x+y-2=0,则与y轴的交点即为上顶点坐标(2,0),与x轴的交点即为焦点,根据公式,即椭圆方程为:
(PS:此题可能算是填空题,比较纠结的一道,因为要理清思路,计算有些繁琐。但是,是不是就做不出来呢,不是的,在我们寒假题海班的时候讲过一道与此相似的题型,也就在理科教材第147页第23题。所以最纠结的一道高考题也不过如此,你们还怕什么?)
(江苏)在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是________
(江苏)在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
(重庆)如题(20)图,椭圆的中心为原点,离心率,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ) 设动点满足:,其中是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.
(上海)设为常数,若点是双曲线的一个焦点,则 。
(浙江)已知抛物线:=,圆:的圆心为点M
(Ⅰ)求点M到抛物线的准线的距离;
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程
本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。
(I)解:由题意可知,抛物线的准线方程为:
所以圆心M(0,4)到准线的距离是
(II)解:设,则题意得,
设过点P的圆C2的切线方程为,
即 ①
则即,
设PA,PB的斜率为,则是上述方程的两根,所以
将①代入由于是此方程的根,故,所以
由,得,解得即点P的坐标为
,所以直线的方程为
(天津)在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分.
(I)解:设 由题意,可得即
整理得(舍),或所以
(II)解:由(I)知可得椭圆方程为直线PF2方程为
A,B两点的坐标满足方程组消去y并整理,得解得
得方程组的解不妨设
设点M的坐标为,
由于是由即,化简得
将所以
因此,点M的轨迹方程是
(四川)椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(I)当|CD | = 时,求直线l的方程;
(II)当点P异于A、B两点时,求证:OP·OQ 为定值。
(陕西)如图,设P是圆上的动点,点D是P在x轴上的摄影,M为PD上一点,且
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度
解:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp)
由已知 xp=x
∵ P在圆上, ∴ ,即C的方程为
(Ⅱ)过点(3,0)且斜率为的直线方程为,
设直线与C的交点为
将直线方程代入C的方程,得
即
∴
∴ 线段AB的长度为
注:求AB长度时,利用韦达定理或弦长公式求得正确结果,同样得分。
(陕西)如图,从点P1(0,0)作x轴的垂线交于曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交与点P2。再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,QI;P2,Q2…Pn,Qn,记点的坐标为(,0)(k=1,2,…,n)。
(Ⅰ)试求与的关系(2≤k≤n);
( Ⅱ)求
解(Ⅰ)设,由得点处切线方程为
由得。
( Ⅱ),得,
(山东)已知直线l与椭圆C: 交于P.Q两不同点,且△OPQ的面积S=
,其中Q为坐标原点。
(Ⅰ)证明X12+X22和Y12+Y22均为定值
(Ⅱ)设线段PQ的中点为M,求的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG若存在,判断△DEG的形状;若不存在,请说明理由。
(全国新)在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足MB//OA, MA•AB = MB•BA,M点的轨迹为曲线C。
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
解:
(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意得知(+)• =0,即(-x,-4-2y)• (x,-2)=0.
所以曲线C的方程式为y=x-2.
(Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x
因此直线的方程为,即。
则O点到的距离.又,所以
当=0时取等号,所以O点到距离的最小值为2.
(北京)曲线C是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数的点的轨迹.给出下列三个结论:
① 曲线C过坐标原点;
② 曲线C关于坐标原点对称;
③若点P在曲线C上,则△FPF的面积大于a。
其中,所有正确结论的序号是
(辽宁)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.
【思路点拨】方程联立利用韦达定理是解决这类问题的基本思路,注意把用坐标表示后求出P点的坐标,然后再结合直线方程把P点的纵坐标也用A、B两点的横坐标表示出来。从而求出点P的坐标代入椭圆方程验证即可证明点P在C上。(II)此问题证明有两种思路:思路一:关键是证明互补.通过证明这两个角的正切值互补即可,再求正切值时要注意利用倒角公式。
思路二:根据圆的几何性质圆心一定在弦的垂直平分线上,所以根据两条弦的垂直平分线的交点找出圆心N,然后证明N到四个点A、B、P、Q的距离相等即可.
【精讲精析】 (I)设
直线,与联立得
由得
,
所以点P在C上。
(II)法一:
同理
所以互补,
因此A、P、B、Q四点在同一圆上。
法二:由和题设知,,PQ的垂直平分线的方程为…①
设AB的中点为M,则,AB的垂直平分线的方程为…②
由①②得、的交点为
,
,,
故.
所以A、P、B、Q四点在同一圆圆N上.
(辽宁)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
解:(I)因为C1,C2的离心率相同,故依题意可设
设直线,分别与C1,C2的方程联立,求得
………………4分
当表示A,B的纵坐标,可知
………………6分
(II)t=0时的l不符合题意.时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即
解得
因为
所以当时,不存在直线l,使得BO//AN;
当时,存在直线l使得BO//AN. ………………12分
(江西)是双曲线:上一点,分别是双曲线的左、右定点,直线的斜率之积为.
(1) 求双曲线的离心率;
(2) 过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上的一点,满足,求的值.
解:(1)已知双曲线E:,在双曲线上,M,N分别为双曲线E的左右顶点,所以,,直线PM,PN斜率之积为
而,比较得
(2)设过右焦点且斜率为1的直线L:,交双曲线E于A,B两点,则不妨设,又,点C在双曲线E上:
*(1)
又 联立直线L和双曲线E方程消去y得:
由韦达定理得:,代入(1)式得:
(江苏)、如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
N
M
P
A
x
y
B
C
(1)当直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB
(湖南)如图7,椭圆的离心率为,轴被曲线 截得的线段长等于的长半轴长。
(Ⅰ)求,的方程;
(Ⅱ)设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.
(i)证明:;
(ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?
请说明理由。
解析:(I)由题意知,从而,又,解得。
故,的方程分别为。
(II)(i)由题意知,直线的斜率存在,设为,则直线的方程为.
由得,
设,则是上述方程的两个实根,于是。
又点的坐标为,所以
故,即。
(ii)设直线的斜率为,则直线的方程为,由解得或,则点的坐标为
又直线的斜率为 ,同理可得点B的坐标为.
于是
由得,
解得或,则点的坐标为;
又直线的斜率为,同理可得点的坐标
于是
因此
由题意知,解得 或。
又由点的坐标可知,,所以
故满足条件的直线存在,且有两条,其方程分别为和。
(湖北)如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;
(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
(湖北)平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
(广东)设圆C与两圆中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程.
(2)已知点且P为L上动点,求的最大值及此时点P的坐标.
(福建)已知直线l:y=x+m,m∈R。
(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;
(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。
(安徽)设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。
(北京)已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.
解:(Ⅰ)由已知得
所以
所以椭圆G的焦点坐标为
离心率为
(Ⅱ)由题意知,.
当时,切线l的方程,点A、B的坐标分别为
此时
当m=-1时,同理可得
当时,设切线l的方程为
由
设A、B两点的坐标分别为,则
又由l与圆
所以
由于当时,
所以.
因为
且当时,|AB|=2,所以|AB|的最大值为2.