• 1.02 MB
  • 2021-05-13 发布

高中物理磁场高考考题分解

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010磁场高考题选 ‎3.(2010·浙江理综·T24)(22分)在一个放射源水平放射出α、β 和 γ 和三种射线,垂直射入如图所示磁场。区域Ⅰ和Ⅱ的宽度均为d,各自存在着垂直纸面的匀强磁场,两区域的磁感强度大小B 相等,方向相反(粒子运动不考虑相对论效应)。‎ ‎(1)若要筛选出速率大于v1的β 粒子进入区域Ⅱ,求磁场宽度d 与B 和v1的关系。‎ ‎(2)若B=0.0034T,v1=‎0.1c(c是光速度),则可得d,α 粒子的速率为‎0.001c,计算α 和γ 射线离开区域Ⅰ时的距离;并给出去除 α 和 γ 射线的方法。‎ ‎(3)当d满足第(1)小题所给关系时,请给出速率在,v10)和初速度v的带电微粒。发射时,这束带电微粒分布在00)和初速度v的带电微粒。发射时,这束带电微粒分布在00‎ 带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。‎ 所以,这束带电微粒与x同相交的区域范围是x>0.‎ ‎【答案】(1);方向垂直于纸面向外 ‎(2)见解析 ‎(3)与x同相交的区域范围是x>0.‎ ‎6.(2010·山东理综·T 25)(18分)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为、带电量+q、重力不计的带电粒子,以初速度垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求 ‎⑴粒子第一次经过电场的过程中电场力所做的功。‎ ‎⑵粒子第n次经过电场时电场强度的大小。‎ ‎⑶粒子第n次经过电场子所用的时间。‎ ‎⑷假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标明坐标刻度值)。‎ ‎【命题立意】本题以带电粒子在复合场中的运动为情景,结合变化的电场的周期性,突出了高考对运用数学工具处理物理问题能力、推理能力、分析综合能力的要求,主要考查洛伦兹力公式、牛顿第二定律、动能定理、匀加速直线运动规律、匀速圆周运动规律、电场变化的周期和运动时间的关系等知识点。‎ ‎【思路点拨】解答本题时可按以下思路分析:‎ ‎ ‎ ‎ ‎ ‎【规范解答】‎ ‎(1)设磁场的磁感应强度的大小为B,粒子第n次进入磁场时的半径为Rn,速度为vn,由牛顿第二定律得:‎ ‎ ①‎ 由①得:‎ ‎ ②‎ 因为R2=2R1,所以 ‎ ③‎ 对于粒子第一次在电场中的运动,由动能定理得 ‎ ④‎ 联立③④式解得 ‎ ⑤‎ ‎(2)粒子第n次进入电场时速度为vn,出电场时速度为xn+1,有 ‎, ⑥‎ 由动能定理得 ‎ ⑦‎ 联立⑥⑦式得 ‎ ⑧‎ ‎(3)设粒子第n次在电场中运动的加速度为an,由牛顿第二定律得 ‎ ⑨‎ 由运动学公式得 ‎ ⑩‎ 联立⑥⑧⑨⑩式得 ‎ ‎ ‎(4)如图所示 评分标准:‎ ‎(1)问6分,①②③共3分,④⑤共3分 ‎(2)问5分,⑥⑦共4分,⑧1分 ‎(3)问4分,⑨⑩共3分, 1分 ‎(4)问3分 ‎9.(2010.海南理综T15)‎ 右图中左边有一对平行金属板,两板相距为d.电压为V;两板之间有匀强磁场,磁感应强度大小为,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区城边界上的G点射出.已知弧所对应的圆心角为,不计重力.求 ‎(1)离子速度的大小;‎ ‎(2)离子的质量.‎ ‎【命题立意】考查带电粒子在速度选择器中的直线运动以及在匀强磁场中的圆周运动 ‎【思路点拨】本题可按照以下思路分析:‎ 只受洛伦兹力 匀速圆周运动 几何关系 求出未知量 ‎【规范解答】‎ ‎ (1)由题设知,离子在平行金属板之间做匀速直线运动,安所受到的向上的压力和向下的电场力平衡 ‎ ‎ 式中,是离子运动速度的大小,是平行金属板之间的匀强电场的强度,有 ‎ ‎ 解得 ‎ ‎(2)在圆形磁场区域,离子做匀速圆周运动,由洛伦兹力公式和牛顿第二定律有 ‎ ‎ 式中,和分别是离子的质量和它做圆周运动的半径。由题设,离子从磁场边界上的点G穿出,离子运动的圆周的圆心必在过E点垂直于EF的直线上,且在EG的垂直一平分线上(见右图)。由几何关系有 ‎ ‎ 式中,是与直径EF的夹角,由几何关系得 ‎ ‎ 联立得,离子的质量为 ‎ 图15‎ ‎1.(2010·全国Ⅰ理综·T26)(21分).如下图15,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。已知沿y轴正方向发射的粒子在时刻刚好从磁场边界上点离开磁场。求:‎ ‎(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;‎ ‎(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;‎ ‎(3)从粒子发射到全部粒子离开磁场所用的时间。‎ ‎【命题立意】本题考查了带电粒子在有边界磁场中的运动,正确分析带电粒 子在磁场中运动的物理过程,并作出粒子轨迹的示意图是解题的关键.‎ ‎【思路点拨】解答本题时可按以下思路分析: ‎ 带电粒子在第一象限有边界磁场中做一段圆弧运动,确定其圆心 由几何知识、洛仑兹力公式及牛顿第二定律,求出荷质比.‎ 由同一时刻仍在磁场中的粒子到O的点的距离相等及几何知识分析,可解答所求.‎ ‎【规范解答】⑴初速度与y轴正方向平行的粒子在磁场中的运动轨迹如图16中的弧OP所示,其圆心为C.由题给条件可以得出 ‎ ∠OCP= (2分)‎ 此粒子飞出磁场所用的时间为 ‎ t0= (2分)‎ 式中T为粒子做圆周运动的周期.‎ 设粒子运动速度的大小为v,半径为R,由几何关系可得 R= a (2分)‎ 由洛仑兹力公式和牛顿第二定律有 qvB =m (1分)‎ T= (1分)‎ 解以上联立方程,可得 = (3分)‎ ‎(2)依题意,同一时刻仍在磁场内的粒子到O的距离相同(2分),在t0时刻仍在磁场中的粒子应位于以O点为圆心、OP为半径的弧MN上,如图16所示.‎ 图17‎ 设此时位于P、M、N三点的粒子的初速度分别为vp、vM、vN.由对称性可知vp与OP、vM与OM、vN.与ON的夹角均为π/3.设vM、vN.与y轴正向的夹角分别为θM、θN,,由几何关系有 θM= (1分)‎ θN= (1分)‎ 图16‎ 对于所有此时仍在磁场中的粒子,其初速度与y轴正方向所成的夹角θ应满足 ≤θ≤ (2分)‎ ‎(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图17所示.由几何关系可知, ‎ 弧长OM等于弧长OP (1分)‎ 由对称性可知,‎ 弧长ME等于弧长OP (1分)‎ 所以从粒子发射到全部粒子飞出磁场所用的时间 ‎    tm=2 t0 (2分)‎ ‎【答案】⑴R = a ,= ‎2.(2010·全国Ⅱ理综·T26)(21分)图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力 ‎(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。‎ ‎(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。‎ ‎(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。‎ ‎【命题立意】本题通过设计速度选择器、特殊磁场区域,对离子受力分析和运动分析,考查了考生的理解能力、推理能力、综合运用数学知识解决物理问题的能力。‎ ‎【思路点拨】解答本题时,可参照以下解题步骤:‎ 关键 点 ‎(1)离子通过复合场做直线运动,则磁场力和向下的电场力平衡 ‎(2)离子在磁场中做匀速圆周运动,由洛伦兹力为向心力列式求解.‎ ‎(3)注意临界值与圆的知识的运用.‎ ‎【规范解答】(1)由题意知,所有离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡,有www.zxxk.com ‎ ① ‎ www.zxxk.com 式中,是离子运动的速度,是平行金属板之间的匀强电场的强度,有www.zxxk.com ‎ ② ‎ www.zxxk.com 由①②式得 ③ ‎ www.zxxk.com www.zxxk.com 在正三角形磁场区域,离子甲做匀速圆周运动。设离子甲质量为,由洛伦兹力公式和牛顿第二定律有www.zxxk.com ‎ ④‎ www.zxxk.com 式中,是离子甲做圆周运动的半径。离子甲在磁场中的运动轨迹为半圆,圆心为:这半圆刚好与边相切于,与边交于点。在中,垂直于。由几何关系得 ⑤‎ 由⑤式得(-)a ⑥‎ 联立③④⑥式得,离子甲的质量为m=(-)    ⑦‎ ‎(2) 同理,由洛伦兹力公式和牛顿第二定律有www.zxxk.com ‎    ⑧ ‎ www.zxxk.com www.zxxk.com 式中,和分别为离子乙的质量和做圆周运动的轨道半径。离子乙运动的圆周的圆心必在两点 之间,由几何关系有www.zxxk.com ‎ ⑨‎ www.zxxk.com 由⑨式得 ⑩www.zxxk.com 联立③⑧⑩式得,离子乙的质量为www.zxxk.com ‎ www.zxxk.com ‎(3)对于最轻的离子,其质量为,由④式知,它在磁场中做半径为的匀速圆周运动。因而与的交点为,有 ‎ ‎ (1) www.zxxk.com www.zxxk.com 当这些离子中的离子质量逐渐增大到m时,离子到达磁场边界上的点的位置从点沿边变到点;当离子质量继续增大时,离子到达磁场边界上的点的位置从点沿边趋向于点。点到点的距离为 www.zxxk.com 所以,磁场边界上可能有离子到达的区域是:边上从到点。边上从到。‎ ks5u ks5u ks5u ks5u ks5u ks5u ks5u 评分参考:第(1)问11分,①②式各1分,③式2分,④⑤式各2分, ⑦式3分.ks5u 第(2)问6分,⑧式1分,⑨式2分,式3分ks5u 第(3)问4分 对于磁场边界上可能有离子达到的区域,答出“边上从到”给2分,答出“边上从到”,给2分。‎ ‎【答案】 ⑴ ⑵ (3) 边上从到点。边上从到。‎ ‎3.(2010·四川理综·T24)如图所示,电源电动势,内阻,电阻。间距的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度的匀强磁场。闭合开关,板间电场视为匀强电场,将一带正电的小球以初速度沿两板间中线水平射入板间。设滑动变阻器接入电路的阻值为Rx,忽略空气对小球的作用,取。w_w o⑴当Rx=29Ω时,电阻消耗的电功率是多大?‎ ‎⑵若小球进入板间做匀速圆周运动并与板相碰,碰时速度与初速度的夹角为,则Rx是多少?‎ ‎【命题立意】考查直流电路、电容器、带电粒子与磁场中的运动问题 ‎【思路点拨】解答本题时,可参照以下解题步骤:‎ 关键 点 ‎(1)对于直流电路,电容器相当于断路,‎ ‎(2)电容器内部场强E.= ‎(3)注意临界值与圆的知识的运用.‎ ‎【规范解答】‎ ‎⑴闭合电路的外电阻为 ‎ Ω ①‎ ‎ 根据闭合电路的欧姆定律 ‎ A ②‎ ‎ R2两端的电压为 ‎ V ③‎ ‎ R2消耗的功率为W ④‎ ‎⑵小球进入电磁场做匀速圆周运动,说明重力和电场力等大反向,洛仑兹力提供向心力,根据牛顿第二定律 ‎ ⑤‎ ‎ ⑥‎ ‎ 联立⑤⑥化简得 ⑦‎ ‎ 小球做匀速圆周运动的初末速的夹角等于圆心角为60°,根据几何关系得 ‎ ‎ ‎ ⑧‎ ‎ 联立⑦⑧带入数据 ‎ V ‎ A ⑨‎ Ω ⑩‎ ‎【答案】⑴0.64W ⑵54Ω