- 240.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年贵州省高考数学试卷(文科)(全国新课标Ⅲ)
一、选择题(共12小题,每小题5分,满分60分)
1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AB=( )
A.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10}
2.(5分)若z=4+3i,则=( )
A.1 B.﹣1 C.+i D.﹣i
3.(5分)已知向量=(,),=(,),则∠ABC=( )
A.30° B.45° C.60° D.120°
4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( )
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )
A. B. C. D.
6.(5分)若tanθ=,则cos2θ=( )
A. B. C. D.
7.(5分)已知a=,b=,c=,则( )
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( )
A.3 B.4 C.5 D.6
9.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=( )
A. B. C. D.
10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18 C.90 D.81
11.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A. B. C. D.
二、填空题(共4小题,每小题5分,满分20分)
13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为 .
14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移 个单位长度得到.
15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|= .
16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是 .
三、解答题(共5小题,满分60分)
17.(12分)已知各项都为正数的数列{an}满足a1=1,an2﹣(2an+1﹣1)an﹣2an+1=0.
(1)求a2,a3;
(2)求{an}的通项公式.
18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1﹣7分别对应年份2008﹣2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646.
参考公式:相关系数r=,
回归方程=+t中斜率和截距的最小二乘估计公式分别为:
=,=﹣.
19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求四面体N﹣BCM的体积.
20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
21.(12分)设函数f(x)=lnx﹣x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<<x;
(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx.
请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若∠PFB=2∠PCD,求∠PCD的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.
23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
24.已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.
2016年贵州省高考数学试卷(文科)(全国新课标Ⅲ)
参考答案与试题解析
一、选择题(共12小题,每小题5分,满分60分)
1.C.2.D.3.A4.D5.C.6.D.7.A8.B.9.D10.B.11.B
12.解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),
令x=﹣c,代入椭圆方程可得y=±b=±,
可得P(﹣c,±),
设直线AE的方程为y=k(x+a),
令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),
设OE的中点为H,可得H(0,),
由B,H,M三点共线,可得kBH=kBM,
即为=,
化简可得=,即为a=3c,
可得e==.
故选:A.
二、填空题(共4小题,每小题5分,满分20分)
13.解答】解:由约束条件作出可行域如图,
联立,解得,即A(﹣1,﹣1).
化目标函数z=2x+3y﹣5为.
由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为2×(﹣1)+3×(﹣1)﹣5=﹣10.
故答案为:﹣10.
14.解答】解:∵y=sinx﹣cosx=2sin(x﹣),
令f(x)=2sinx,
则f(x﹣φ)=2in(x﹣φ)(φ>0),
依题意可得2sin(x﹣φ)=2sin(x﹣),
故﹣φ=2kπ﹣(k∈Z),
即φ=﹣2kπ+(k∈Z),
当k=0时,正数φmin=,
故答案为:.
15.解答】解:由题意,圆心到直线的距离d==3,
∴|AB|=2=2,
∵直线l:x﹣y+6=0
∴直线l的倾斜角为30°,
∵过A,B分别作l的垂线与x轴交于C,D两点,
∴|CD|==4.
故答案为:4.
16.解答】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,
设x>0,则﹣x<0,
∴f(x)=f(﹣x)=ex﹣1+x,
则f′(x)=ex﹣1+1,
f′(1)=e0+1=2.
∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).
即y=2x.
故答案为:y=2x.
三、解答题(共5小题,满分60分)
17.解答】解:(1)根据题意,an2﹣(2an+1﹣1)an﹣2an+1=0,
当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,
而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,
当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,
又由a2=,解可得a3=,
故a2=,a3=;
(2)根据题意,an2﹣(2an+1﹣1)an﹣2an+1=0,
变形可得(an﹣2an+1)(an+1)=0,
即有an=2an+1或an=﹣1,
又由数列{an}各项都为正数,
则有an=2an+1,
故数列{an}是首项为a1=1,公比为的等比数列,
则an=1×()n﹣1=n﹣1,
故an=n﹣1.
18.解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:
∵r==≈≈≈0.993,
∵0.993>0.75,
故y与t之间存在较强的正相关关系;
(2)==≈≈0.103,
=﹣≈1.331﹣0.103×4≈0.92,
∴y关于t的回归方程=0.10t+0.92,
2016年对应的t值为9,
故=0.10×9+0.92=1.82,
预测2016年我国生活垃圾无害化处理量为1.82亿吨..
19.解答】证明:(Ⅰ)取BC中点E,连结EN,EM,
∵N为PC的中点,∴NE是△PBC的中位线
∴NE∥PB,
又∵AD∥BC,∴BE∥AD,
∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,
∴BE=BC=AM=2,
∴四边形ABEM是平行四边形,
∴EM∥AB,∴平面NEM∥平面PAB,
∵MN⊂平面NEM,∴MN∥平面PAB.
解:(Ⅱ)取AC中点F,连结NF,
∵NF是△PAC的中位线,
∴NF∥PA,NF==2,
又∵PA⊥面ABCD,∴NF⊥面ABCD,
如图,延长BC至G,使得CG=AM,连结GM,
∵AMCG,∴四边形AGCM是平行四边形,
∴AC=MG=3,
又∵ME=3,EC=CG=2,
∴△MEG的高h=,
∴S△BCM===2,
∴四面体N﹣BCM的体积VN﹣BCM===.
20.解答】(Ⅰ)证明:连接RF,PF,
由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,
∴∠PFQ=90°,
∵R是PQ的中点,
∴RF=RP=RQ,
∴△PAR≌△FAR,
∴∠PAR=∠FAR,∠PRA=∠FRA,
∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,
∴∠FQB=∠PAR,
∴∠PRA=∠PQF,
∴AR∥FQ.
(Ⅱ)设A(x1,y1),B(x2,y2),
F(,0),准线为 x=﹣,
S△PQF=|PQ|=|y1﹣y2|,
设直线AB与x轴交点为N,
∴S△ABF=|FN||y1﹣y2|,
∵△PQF的面积是△ABF的面积的两倍,
∴2|FN|=1,∴xN=1,即N(1,0).
设AB中点为M(x,y),由得=2(x1﹣x2),
又=,
∴=,即y2=x﹣1.
∴AB中点轨迹方程为y2=x﹣1.
21.解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,
由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.
即有f(x)的增区间为(0,1);减区间为(1,+∞);
(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.
由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,
可得f(x)<f(1)=0,即有lnx<x﹣1;
设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,
当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,
即有xlnx>x﹣1,则原不等式成立;
(3)证明:设G(x)=1+(c﹣1)x﹣cx,G′(x)=c﹣1﹣cxlnc,
可令G′(x)=0,可得cx=,
由c>1,x∈(0,1),可得1<cx<c,即1<<c,
由(1)可得f(x)的增区间为(0,1),
可得cx=恰有一解,设为x=x0是G(x)的最大值点,且0<x0<1,
由G(0)=G(1)=0,且G(x)在(0,x0)递增,在(x0,1)递减,
可得G(x0)=1+(c﹣1)x0﹣cx0>0成立,
则c>1,当x∈(0,1)时,1+(c﹣1)x>cx.
请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
22.解答】(1)解:连接PB,BC,
设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,
∠PBA=∠4,∠PAB=∠5,
由⊙O中的中点为P,可得∠4=∠5,
在△EBC中,∠1=∠2+∠3,
又∠D=∠3+∠4,∠2=∠5,
即有∠2=∠4,则∠D=∠1,
则四点E,C,D,F共圆,
可得∠EFD+∠PCD=180°,
由∠PFB=∠EFD=2∠PCD,
即有3∠PCD=180°,
可得∠PCD=60°;
(2)证明:由C,D,E,F共圆,
由EC的垂直平分线与FD的垂直平分线交于点G
可得G为圆心,即有GC=GD,
则G在CD的中垂线,又CD为圆G的弦,
则OG⊥CD.
[选修4-4:坐标系与参数方程]
23.解答】解:(1)曲线C1的参数方程为(α为参数),
移项后两边平方可得+y2=cos2α+sin2α=1,
即有椭圆C1:+y2=1;
曲线C2的极坐标方程为ρsin(θ+)=2,
即有ρ(sinθ+cosθ)=2,
由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,
即有C2的直角坐标方程为直线x+y﹣4=0;
(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,
|PQ|取得最值.
设与直线x+y﹣4=0平行的直线方程为x+y+t=0,
联立可得4x2+6tx+3t2﹣3=0,
由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,
解得t=±2,
显然t=﹣2时,|PQ|取得最小值,
即有|PQ|==,
此时4x2﹣12x+9=0,解得x=,
即为P(,).
另解:设P(cosα,sinα),
由P到直线的距离为d=
=,
当sin(α+)=1时,|PQ|的最小值为,
此时可取α=,即有P(,).
[选修4-5:不等式选讲]
24.解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,
∵f(x)≤6,∴|2x﹣2|+2≤6,
|2x﹣2|≤4,|x﹣1|≤2,
∴﹣2≤x﹣1≤2,
解得﹣1≤x≤3,
∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.
(2)∵g(x)=|2x﹣1|,
∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,
2|x﹣|+2|x﹣|+a≥3,
|x﹣|+|x﹣|≥,
当a≥3时,成立,
当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,
∴(a﹣1)2≥(3﹣a)2,
解得2≤a<3,
∴a的取值范围是[2,+∞).