• 129.50 KB
  • 2021-05-13 发布

2010江苏高考立体几何试题汇编文

  • 17页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010~2018年高考立体几何试题汇编 ‎1、考纲要求:柱、锥、台、球及简单组合体A柱、锥、台、球的表面积和体积A平面及其性质A直线与平面平行、垂直的判定及性质B两平面平行、垂直的判定及性质B ‎2、高考解读:通常一大一小,填空题主要考查空间几何体的表面积与体积,解答题主要考查空间的平行与垂直关系,其中三年也考查以几何体为背景的应用题。这些题目难度不大,主要考查学生的基础知识和空间转换能力。属于中档题。‎ 一、空间几何体的表面积与体积 ‎★★7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为   cm3.‎ ‎★★8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=   .‎ ‎★★8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是   .‎ ‎★★9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为   .‎ ‎★★6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是   .‎ ‎★★10.(5分)(2018•江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为   .‎ 二、空间点、线、面的位置关系 ‎★★★16.(14分)(2010•江苏)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.‎ ‎(1)求证:PC⊥BC;‎ ‎(2)求点A到平面PBC的距离.‎ ‎★★★16.(14分)(2011•江苏)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:‎ ‎(1)直线EF∥平面PCD;‎ ‎(2)平面BEF⊥平面PAD.‎ ‎★★★16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:‎ ‎(1)平面ADE⊥平面BCC1B1;‎ ‎(2)直线A1F∥平面ADE.‎ ‎★★★16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:‎ ‎(1)平面EFG∥平面ABC;‎ ‎(2)BC⊥SA.‎ ‎★★★16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:‎ ‎(1)直线PA∥平面DEF;‎ ‎(2)平面BDE⊥平面ABC.‎ ‎★★★16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.‎ 求证:‎ ‎(1)DE∥平面AA1C1C;‎ ‎(2)BC1⊥AB1.‎ ‎★★★16.(14分)(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:‎ ‎(1)直线DE∥平面A1C1F;‎ ‎(2)平面B1DE⊥平面A1C1F.‎ ‎★★★15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.‎ 求证:(1)EF∥平面ABC;‎ ‎(2)AD⊥AC.‎ ‎★★★15.(14分)(2018•江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.‎ 求证:(1)AB∥平面A1B1C;‎ ‎(2)平面ABB1A1⊥平面A1BC.‎ 三、以空间几何体为背景的应用题 ‎★★★‎ ‎17.(14分)(2011•江苏)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).‎ ‎(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?‎ ‎(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.‎ ‎★★★17.(14分)(2016•江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.‎ ‎(1)若AB=6m,PO1=2m,则仓库的容积是多少?‎ ‎(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?‎ ‎★★★★18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)‎ ‎(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;‎ ‎(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.‎ 宁可累死在路上,也不能闲死在家里!宁可去碰壁,也不能面壁。是狼就要练好牙,是羊就要练好腿。什么是奋斗?奋斗就是每天很难,可一年一年却越来越容易。不奋斗就是每天都很容易,可一年一年越来越难。能干的人,不在情绪上计较,只在做事上认真;无能的人!不在做事上认真,只在情绪上计较。拼一个春夏秋冬!赢一个无悔人生!早安!—————献给所有努力的人.‎