- 277.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014年高考文数汇编(数列)
D1 数列的概念与简单表示法
16.[2014·新课标全国卷Ⅱ] 数列{an}满足an+1=,a8=2,则a1=________.
16.
D2 等差数列及等差数列前n项和
2.[2014·重庆卷] 在等差数列{an}中,a1=2,a3+a5=10,则a7=( )
A.5 B.8 C.10 D.14
2.B
5.[2014·天津卷] 设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1=( )
A.2 B. -2 C . D.-
5.D
17.[2014·福建卷] 在等比数列{an}中,a2=3,a5=81.
(1)求an;
(2)设bn=log3an,求数列{bn}的前n项和Sn.
解:(1)设{an}的公比为q,依题意得
解得
因此,an=3n-1.
(2)因为bn=log3an=n-1,
所以数列{bn}的前n项和Sn==.
16.[2014·湖南卷] 已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
解:(1)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=-=n.
故数列{an}的通项公式为an=n.
(2)由(1)知,bn=2n+(-1)nn.记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).
记A=21+22+…+22n,B=-1+2-3+4-…+2n,
则A==22n+1-2,
B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.
故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.
13.[2014·江西卷] 在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取得最大值,则d的取值范围为________.
13.
9.[2014·辽宁卷] 设等差数列{an}的公差为d,若数列{2a1an}为递减数列,则( )
A.d>0 B.d<0 C.a1d>0 D.a1d<0
9.D
17.[2014·全国卷] 数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(1)设bn=an+1-an,证明{bn}是等差数列;
(2)求{an}的通项公式.
解:(1)由an+2=2an+1-an+2,得
an+2-an+1=an+1-an+2,
即bn+1=bn+2.
又b1=a2-a1=1,
所以{bn}是首项为1,公差为2的等差数列.
(2)由(1)得bn=1+2(n-1),
即an+1-an=2n-1.
于是
所以an+1-a1=n2,
即an+1=n2+a1.
又a1=1,所以{an}的通项公式an=n2-2n+2.
5.[2014·新课标全国卷Ⅱ] 等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=( )
A.n(n+1) B.n(n-1) C. D.
5.A
19.[2014·山东卷] 在等差数列{an}中,已知公差d=2,a2是a1与a4的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=a,记Tm=-b1+b2-b3+b4-…+(-1)nbn,求Tn.
解:(1)由题意知,(a1+d)2=a1(a1+3d),
即(a1+2)2=a1(a1+6),解得a1=2.
故数列{an}的通项公式为an=2n.
(2)由题意知,bn=a=n(n+1),
所以Tn=-1×2+2×3-3×4+…+(-1)nn×(n+1).
因为bn+1-bn=2(n+1),
所以当n为偶数时,
Tn=(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)
=4+8+12+…+2n
=
=,
当n为奇数时,
Tn=Tn-1+(-bn)
=-n(n+1)
=-.
所以Tn=
19.[2014·浙江卷] 已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
解:(1)由题意知(2a1+d)(3a1+3d)=36,
将a1=1代入上式解得d=2或d=-5.
因为d>0,所以d=2.
从而an=2n-1,Sn=n2(n∈N*).
(2)由(1)得am+am+1+am+2+…+am+k=(2m+k-1)(k+1),
所以(2m+k-1)(k+1)=65.
由m,k∈N*知2m+k-1≥k+1>1,
故所以
16.[2014·重庆卷] 已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(1)求an及Sn;
(2)设{bn}是首项为2的等比数列,公比q满足q2-(a4+1)q+S4=0,求{bn}的通项公式及其前n项和Tn.
解:(1)因为{an}是首项a1=1,公差d=2的等差数列,所以
an=a1+(n-1)d=2n-1.
故Sn=1+3+…+(2n-1)===n2.
(2)由(1)得a4=7,S4=16.因为q2-(a4+1)q+S4=0,即q2-8q+16=0,
所以(q-4)2=0,从而q=4.
又因为b1=2,{bn}是公比q=4的等比数列,
所以bn=b1qn-1=2×4n-1=22n-1.
从而{bn}的前n项和Tn==(4n-1).
D3 等比数列及等比数列前n项和
12.[2014·安徽卷] 如图13,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;….依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.
图13
12.
13.、[2014·广东卷] 等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.
13.5
19.[2014·湖北卷] 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
解:(1)设数列{an}的公差为d,
依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),
化简得d2-4d=0,解得d=0或d=4,
当d=0时,an=2;
当d=4时,an=2+(n-1)·4=4n-2,
从而得数列{an}的通项公式为an=2或an=4n-2.
(2)当an=2时,Sn=2n,显然2n<60n+800,
此时不存在正整数n,使得Sn>60n+800成立.
当an=4n-2时,Sn==2n2.
令2n2>60n+800,即n2-30n-400>0,
解得n>40或n<-10(舍去),
此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.
综上,当an=2时,不存在满足题意的正整数n;
当an=4n-2时,存在满足题意的正整数n,其最小值为41.
7.[2014·江苏卷] 在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是________.
7.4
8.[2014·全国卷] 设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=( )
A.31 B.32 C.63 D.64
8.C [解析] 设等比数列{an}的首项为a,公比为q,易知q≠
1,根据题意可得解得q2=4,=-1,所以S6==(-1)(1-43)=63.
5.[2014·新课标全国卷Ⅱ] 等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=( )
A.n(n+1) B.n(n-1) C. D.
5.A [解析] 由题意,得a2,a2+4,a2+12成等比数列,即(a2+4)2=a2(a2+12),解得a2=4,即a1=2,所以Sn=2n+×2=n(n+1).
16.[2014·陕西卷] △ABC的内角A,B,C所对的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(2)若a,b,c成等比数列,且c=2a,求cos B的值.
解: (1)∵a,b,c成等差数列,∴a+c=2b.由正弦定理得sin A+sin C=2sin B.
∵sin B=sin[π-(A+C)]=sin(A+C),
∴sin A+sin C=2sin(A+C).
(2)由题设有b2=ac,c=2a,
∴b=a.
由余弦定理得cos B===.
20.[2014·天津卷] 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
(1)当q=2,n=3时,用列举法表示集合A.
(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.
解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.
(2)证明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an1,都存在m∈N*,使得a1,an,am成等比数列.
17.解:(1)由Sn=,得a1=S1=1.当n≥2时,an=Sn-Sn-1=3n-2,a1也符合上式,所以数列{an}的通项公式为an=3n-2.
(2)证明:要使得a1,an,am成等比数列,只需要a=a1·am,即(3n-2)2=1·(3m-2),即m=3n2-4n+2.而此时m∈N*,且m>n,
所以对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.
19.[2014·四川卷] 设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图像上(n∈N*).
(1)证明:数列{bn}为等比数列;
(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2-,求数列{anb}的前n项和Sn.
19.解:(1)证明:由已知得,bn=2an>0,
当n≥1时,=2an+1-an=2d.
故数列{bn}是首项为2a1,公比为2d的等比数列.
(2)函数f(x)=2x在点(a2,b2)处的切线方程为y-2a2=(2a2ln 2)(x-a2),
其在x轴上的截距为a2-.
由题意知,a2-=2-,
解得a2=2,
所以d=a2-a1=1,an=n,bn=2n,anb=n·4n.
于是,Sn=1×4+2×42+3×43+…+(n-1)×4n-1+n×4n,
4Sn=1×42+2×43+…+(n-1)×4n+n×4n+1,
因此,Sn-4Sn=4+42+…+4n-n·4n+1=-n·4n+1=,
所以,Sn=.