- 1.48 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年全国各地高考数学试题及解答分类汇编大全
(16概率、随机变量及其分布)
一、选择题:
1.(2008福建文)某一批花生种子,如果每一粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是( C )
A. B. C. D.
2.(2008福建理)某一批花生种子,如果每1粒发牙的概率为, 那么播下4粒种子恰有2粒发芽的概率是(B )
A. B. C. D.
3.(2008安徽理)设两个正态分布和的密度函数图像如图所示。则有( A )
A.
B.
C.
D.
4. (2008湖南理)设随机变量服从正态分布,若,则c= ( B. )
A.1 B.2 C.3 D.4
4.【答案】B
4.【解析】
解得=2, 所以选B.
5.(2008江西文、理)电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( C )
A. B. C. D.
5..一天显示的时间总共有种,和为23总共有4种,故所求概率为.
6.(2008辽宁文、理) 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )
A. B. C. D.
7.(2008山东理)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( B )
(A) (B) (C) (D)
8. (2008重庆理)已知随机变量服从正态分布N(3,a2),则P(<3=(D )
(A) (B) (C) (D)
9. (2008重庆文)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的
最大号码是6的概率为( B )
(A) (B) (C) (D)
二、填空题:
1.(2008江苏) 一个骰子连续投2 次,点数和为4 的概率 .
1.【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故
【答案】
2.在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率__ .
2.【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.
【答案】
3.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .
4.(2008上海文)在平面直角坐标系中,从六个点:中任
取三个,这三点能构成三角形的概率是 (结果用分数表示).
5.(2008上海理)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 . (结果用分数表示)
三、解答题:
1.(2008安徽文)在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.
(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率。
(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。
1.解:(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g”的概率为,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为
(2)设表示所抽取的三张卡片中,恰有张卡片带有后鼻音“g”的事件,且其相应的概率为则
,
因而所求概率为
2.(2008安徽理)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。
(Ⅰ)求n,p的值并写出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率
2. (1)由得,从而
的分布列为
0
1
2
3
4
5
6
(2)记”需要补种沙柳”为事件A, 则 得
或
3.(2008北京文)甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.
3.解:(Ⅰ)记甲、乙两人同时参加A岗位服务为事件EA,那么
P(EA)=
即甲、乙两人同时参加A岗位服务的概率是
(Ⅱ)记甲、乙两个同时参加同一岗位服务为事件E,那么
P(E)=
所以,甲、乙两人不在同一岗位服务的概率是
P()=1-P(E)=
4.(2008北京理)甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
4.解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么,
即甲、乙两人同时参加岗位服务的概率是.
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么,
所以,甲、乙两人不在同一岗位服务的概率是.
(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,
则.
所以,的分布列是
1
3
5. (2008福建文)三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响。(1)求恰有二人破译出密码的概率;(2)“密码被破译”与“密码未被破译”的概率那个大?说明理由。
5.解:记“第i个人破译出密码”为事件,则:
(1)设“恰好二人破译出密码”为事件B,则有:
(2)设“密码被破译”为事件C,“密码未被破译”为事件D,则有:
,
所以密码被破译的概率大
6.(2008福建理)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科
目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证
书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试
成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.
6.本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满分12分.
解:设“科目A第一次考试合格”为事件A,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B,“科目B补考合格”为事件B.
(Ⅰ)不需要补考就获得证书的事件为A1·B1,注意到A1与B1相互独立,
则.
答:该考生不需要补考就获得证书的概率为.
(Ⅱ)由已知得,=2,3,4,注意到各事件之间的独立性与互斥性,可得
故
答:该考生参加考试次数的数学期望为.
7. (2008广东文)某初级中学共有学生2000名,各年级男、女生人数如下表.
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19 .
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生, 问应在初三年级抽取多少名?
(3)已知,求初三年级中女生比男生多的概率。
7.解: (1)由,解得,
(2)初三年级人数为,
设应在初三年级抽取m人,则,解得m=12.
答: 应在初三年级抽取12名.
(3)设初三年级女生比男生多的事件为,初三年级女生和男生数记为数对,
由(2)知,则基本事件总数有:
共11个,
而事件包含的基本事件有:
共5个,
∴
8. (2008广东理)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获利分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为.
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%. 如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
8.解: (1) 依题意得, ξ的所有可能取值为6,2,1,-2.
ξ=6,2,1,-2分别对应抽取1件产品为一等品、二等品、三等品、次品这四个事件.
所以,
,
所以ξ的分布列为
(2) 1件产品的平均利润为Eξ=60.63+20.25+10.1-20.02=4.34
(3)设三等品率为x,则二等品率为0.29-x,此时ξ的分布列为
1件产品的平均利润为Eξ=60.7+2(0.29-x)+x-20.01=4.76-x
令Eξ=4.76-x4.73,解得=3%,
答:三等品率最多是3%.
9、(2008海南、宁夏文)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。
9.解:(Ⅰ)总体平均数为.-----------4分
(Ⅱ)设表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.
从总体中抽取2个个体全部可能的基本结果有:,,,,,,,,,,,,,,.共15个基本结果.
事件包括的基本结果有:,,,,,,.共有7个基本结果.
所以所求的概率为.-----------------12分
10、(2008海南、宁夏理)A、B两个投资项目的利润率分别为随机变量X1和X2。根据市场分析,X1和X2的分布列分别为
X1
5%
10%
X2
2%
8%
12%
P
0.8
0.2
P
0.2
0.5
0.3
(1)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1、DY2;(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和。求f(x)的最小值,并指出x为何值时,f(x)取到最小值。 (注:D(aX + b) = a2DX)
10.解:(Ⅰ)由题设可知和的分布列分别为
Y1
5
10
P
0.8
0.2
Y2
2
8
12
P
0.2
0.5
0.3
,
,
,
.
(Ⅱ)
,
当时,为最小值.
11. (2008湖北理)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.
(Ⅰ)求ξ的分布列,期望和方差;
(Ⅱ)若η=aξ-b,Eη=1,Dη=11,试求a,b的值.
11.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)
解:(Ⅰ)的分布列为:
0
1
2
3
4
P
∴
(Ⅱ)由,得a2×2.75=11,即又所以
当a=2时,由1=2×1.5+b,得b=-2;
当a=-2时,由1=-2×1.5+b,得b=4.
∴或即为所求.
12.(2008湖南文) 甲乙丙三人参加一家公司的招聘面试,面试合格者可正式签约。甲表示只要面试合格
就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试
合格的概率都是,且面试是否合格互不影响。求:
(I)至少一人面试合格的概率; (II)没有人签约的概率。
12.解:用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,
且
(I)至少有一人面试合格的概率是
(II)没有人签约的概率为
13 (2008湖南理)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:
(Ⅰ)至少有1人面试合格的概率;
(Ⅱ)签约人数的分布列和数学期望.
13.解: 用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,
且P(A)=P(B)=P(C)=.
(Ⅰ)至少有1人面试合格的概率是
(Ⅱ)的可能取值为0,1,2,3.
=
=
=
=
所以, 的分布列是
0
1
2
3
P
的期望
14.(2008江西文) 因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.
(1)求两年后柑桔产量恰好达到灾前产量的概率;
(2)求两年后柑桔产量超过灾前产量的概率.
14.解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件
(2)令B表示两年后柑桔产量超过灾前产量这一事件
15.(2008江西理) 因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1)写出ξ1、ξ2的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?
15.解:(1)ξ1的分布列为
ξ1
0.8
0.9
1
1.125
1.25
P1
0.2
0.15
0.35
0.15
0.15
ξ2的分布列为
ξ2
0.8
0.96
1
1.2
1.44
P2
0.3
0.2
0.18
0.24
0.08
(2)由(1)可得P1>1的概率P(P1>1)= 0.15 + 0.15 = 0.3,
P2>1的概率P(P2>1)= 0.24 + 0.08 = 0.32,
可见,P(P2>1)>P(P1>1)
∴实施方案2,两年后产量超过灾前概率更大。
(3)设实施方案1、2的平均利润分别为利润1、利润2,根据题意
利润1 = (0.2 +0.15)×10 + 0.35×15 + (0.15 + 0.15)×20
= 14.75(万元)
利润2 = (0.3 + 0.2)×10 + 0.18×15 + (0.24 + 0.08)×20
= 14.1(万元)
∴利润1>利润2,
∴实施方案1平均利润更大。
16.(2008辽宁文)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量
2
3
4
频数
20
50
30
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求
(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;
(ⅱ)该种商品4周的销售量总和至少为15吨的概率.
16.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分12分.
解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. 4分
(Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为
(ⅰ). 8分
(ⅱ). 12分
17.(2008辽宁理) 某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量
2
3
4
频数
20
50
30
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.
17.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.
解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. 3分
(Ⅱ)的可能值为8,10,12,14,16,且
P(=8)=0.22=0.04,
P(=10)=2×0.2×0.5=0.2,
P(=12)=0.52+2×0.2×0.3=0.37,
P(=14)=2×0.5×0.3=0.3,
P(=16)=0.32=0.09.
的分布列为
8
10
12
14
16
P
0.04
0.2
0.37
0.3
0.09
9分
=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) 12分
18.(2008全国Ⅱ卷文) 甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.
设甲、乙的射击相互独立.
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
18.解:记分别表示甲击中9环,10环,
分别表示乙击中8环,9环,
表示在一轮比赛中甲击中的环数多于乙击中的环数,
表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,
分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.
(Ⅰ), 2分
. 6分
(Ⅱ), 8分
,
,
. 12分
19.(2008全国Ⅱ卷理) 购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为.
(Ⅰ)求一投保人在一年度内出险的概率;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
19.解:各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为,则.
(Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当, 2分
,
又,
故. 5分
(Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和.
支出 ,
盈利 ,
盈利的期望为 , 9分
由知,,
.
(元).
故每位投保人应交纳的最低保费为15元. 12分
20.(2008全国Ⅰ卷文)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.
20.解:对于甲:
次数
1
2
3
4
5
概率
0.2
0.2
0.2
0.2
0.2
对于乙:
次数
2
3
4
概率
0.4
0.4
0.2
.
21.(2008全国Ⅰ卷理) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)表示依方案乙所需化验次数,求的期望.
21.解:(Ⅰ)对于甲:
次数
1
2
3
4
5
概率
0.2
0.2
0.2
0.2
0.2
对于乙:
次数
2
3
4
概率
0.4
0.4
0.2
.
(Ⅱ)表示依方案乙所需化验次数,的期望为.
22.(2008山东文)现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;
(Ⅱ)求和不全被选中的概率.
22.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间
{,,
,,,
,,,
}
由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用表示“恰被选中”这一事件,则
{,
}
事件由6个基本事件组成,
因而.
(Ⅱ)用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,
由于{},事件有3个基本事件组成,
所以,由对立事件的概率公式得.
23.(2008山东理)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分.
(Ⅰ)求随机变量ε分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
23.(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且
所以ε的分布列为
ε
0
1
2
3
P
ε的数学期望为
Eε=
解法二:根据题设可知
因此ε的分布列为
(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C、D互斥,又
由互斥事件的概率公式得
解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故事
P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).
24..(2008陕西文)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.
24. 解:(Ⅰ)从袋中依次摸出2个球共有种结果,第一次摸出黑球、第二次摸出白球有种结果,则所求概率
.
(Ⅱ)第一次摸出红球的概率为,第二次摸出红球的概率为,第三次摸出红球的概率为,则摸球次数不超过3次的概率为
.
25.(2008陕西理)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.
25.(Ⅰ)设该射手第次击中目标的事件为,则,
.
(Ⅱ)可能取的值为0,1,2,3. 的分布列为
0
1
2
3
0.008
0.032
0.16
0.8
.
26.(2008四川文) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。
26.【解】:(Ⅰ)记表示事件:进入商场的1位顾客购买甲种商品,
记表示事件:进入商场的1位顾客购买乙种商品,
记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
(Ⅱ)记表示事件:进入商场的3位顾客中都未选购甲种商品,也未选购买乙种商品;
表示事件:进入商场的1位顾客未选购甲种商品,也未选购买乙种商品;
表示事件:进入商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选选购乙种商品;
【点评】:此题重点考察相互独立事件有一个发生的概率;
【突破】:分清相互独立事件的概率求法;对于“至少”常从反面入手常可起到简化的作用;
27.(2008四川理) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
27.【解】:记表示事件:进入商场的1位顾客购买甲种商品,
记表示事件:进入商场的1位顾客购买乙种商品,
记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,
(Ⅰ)
(Ⅱ)
(Ⅲ),故的分布列
所以
【点评】:此题重点考察相互独立事件的概率计算,以及求随机变量的概率分布列和数学期望;
【突破】:分清相互独立事件的概率求法,对于“至少”常从反面入手常可起到简化的作用;
28.(2008天津文)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
28.本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.
(Ⅰ)解法一:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得
,
解得或(舍去),所以乙投球的命中率为.
解法二:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得
,
于是或(舍去),故.
所以乙投球的命中率为.
(Ⅱ)解法一:由题设和(Ⅰ)知,,.
故甲投球2次至少命中1次的概率为.
解法二:由题设和(Ⅰ)知,,.
故甲投球2次至少命中1次的概率为.
(Ⅲ)解:由题设和(Ⅰ)知,,,,.
甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中2次,乙2次均不中;甲2次均不中,乙中2次.概率分别为
,
,
.
所以甲、乙两人各投球2次,共命中2次的概率为
.
29.(2008天津理) 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
29.解:(Ⅰ)设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B
由题意得
解得或(舍去),所以乙投球的命中率为
(Ⅱ)由题设和(Ⅰ)知
可能的取值为0,1,2,3,故
的分布列为
0
1
2
3
的数学期望
30.(2008浙江文)一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:
(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率;
(Ⅱ)袋中白球的个数。
30.本题主要考查排列组合、概率等基础知识,同时考查逻辑思维能力和数学应用能力。满分14分。
(Ⅰ)解:由题意知,袋中黑球的个数为
记“从袋中任意摸出两个球,得到的都是黑球”为事件A,则
(Ⅱ)解:记“从袋中任意摸出两个球,至少得到一个白球”为事件B。
设袋中白球的个数为x,则
得到 x=5
31.(2008浙江理)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
31.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分.
(Ⅰ)解:(i)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球的个数为,则,
得到.
故白球有5个.
(ii)随机变量的取值为0,1,2,3,分布列是
0
1
2
3
的数学期望
.
(Ⅱ)证明:设袋中有个球,其中个黑球,由题意得,
所以,,故.
记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则
.
所以白球的个数比黑球多,白球个数多于,红球的个数少于.
故袋中红球个数最少.
32.(2008重庆文)在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(Ⅰ)恰有两道题答对的概率;
(Ⅱ)至少答对一道题的概率.
32.(本小题13分)
解:视“选择每道题的答案”为一次试验,则这是4次独立重复试验,且每次试验中“选择正确”这一事件发生的概率为.
由独立重复试验的概率计算公式得:
(Ⅰ)恰有两道题答对的概率为
(Ⅱ)解法一:至少有一道题答对的概率为
解法二:至少有一道题答对的概率为
33.(2008重庆理)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(Ⅰ) 打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数的分别列与期望E.
33.(本小题13分)
解:令分别表示甲、乙、丙在第k局中获胜.
(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比
赛还未停止的概率为
(Ⅱ)的所有可能值为2,3,4,5,6,且
故有分布列
2
3
4
5
6
P
从而(局).