- 400.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年浙江省高考数学试卷
一、选择题(共10小题,每小题4分,满分40分)
1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=( )
A.(﹣1,2) B.(0,1) C.(﹣1,0) D.(1,2)
2.(4分)椭圆+=1的离心率是( )
A. B. C. D.
3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )
A.+1 B.+3 C.+1 D.+3
4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是( )
A.[0,6] B.[0,4] C.[6,+∞) D.[4,+∞)
5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m( )
A.与a有关,且与b有关 B.与a有关,但与b无关
C.与a无关,且与b无关 D.与a无关,但与b有关
6.(4分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )
A. B. C. D.
8.(4分)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则( )
A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α
10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则( )
A.I1<I2<I3 B.I1<I3<I2 C.I3<I1<I2 D.I2<I1<I3
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .
12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .
13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .
14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是 ,cos∠BDC= .
15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是 ,最大值是 .
16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)
17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是 .
三、解答题(共5小题,满分74分)
18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.
19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).
(1)求f(x)的导函数;
(2)求f(x)在区间[,+∞)上的取值范围.
21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA|•|PQ|的最大值.
22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤;
(Ⅲ)≤xn≤.
2017年浙江省高考数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题4分,满分40分)
1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=( )
A.(﹣1,2) B.(0,1) C.(﹣1,0) D.(1,2)
【分析】直接利用并集的运算法则化简求解即可.
【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},
那么P∪Q={x|﹣1<x<2}=(﹣1,2).
故选:A.
【点评】本题考查集合的基本运算,并集的求法,考查计算能力.
2.(4分)椭圆+=1的离心率是( )
A. B. C. D.
【分析】直接利用椭圆的简单性质求解即可.
【解答】解:椭圆+=1,可得a=3,b=2,则c==,
所以椭圆的离心率为:=.
故选:B.
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )
A.+1 B.+3 C.+1 D.+3
【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.
【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,
圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,
故该几何体的体积为××π×12×3+××××3=+1,
故选:A
【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.
4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是( )
A.[0,6] B.[0,4] C.[6,+∞) D.[4,+∞)
【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.
【解答】解:x、y满足约束条件,表示的可行域如图:
目标函数z=x+2y经过C点时,函数取得最小值,
由解得C(2,1),
目标函数的最小值为:4
目标函数的范围是[4,+∞).
故选:D.
【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.
5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m( )
A.与a有关,且与b有关 B.与a有关,但与b无关
C.与a无关,且与b无关 D.与a无关,但与b有关
【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b的关系,综合可得答案.
【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,
①当﹣>1或﹣<0,即a<﹣2,或a>0时,
函数f(x)在区间[0,1]上单调,
此时M﹣m=|f(1)﹣f(0)|=|a+1|,
故M﹣m的值与a有关,与b无关
②当≤﹣≤1,即﹣2≤a≤﹣1时,
函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,
且f(0)>f(1),
此时M﹣m=f(0)﹣f(﹣)=,
故M﹣m的值与a有关,与b无关
③当0≤﹣<,即﹣1<a≤0时,
函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,
且f(0)<f(1),
此时M﹣m=f(1)﹣f(﹣)=1+a+,
故M﹣m的值与a有关,与b无关
综上可得:M﹣m的值与a有关,与b无关
故选:B
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
6.(4分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.
【解答】解:∵S4+S6>2S5,
∴4a1+6d+6a1+15d>2(5a1+10d),
∴21d>20d,
∴d>0,
故“d>0”是“S4+S6>2S5”充分必要条件,
故选:C
【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题
7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )
A. B. C. D.
【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能
【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,
则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,
且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,
故选D
【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.
8.(4分)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.
【解答】解:∵随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2,…,
0<p1<p2<,
∴<1﹣p2<1﹣p1<1,
E(ξ1)=1×p1+0×(1﹣p1)=p1,
E(ξ2)=1×p2+0×(1﹣p2)=p2,
D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,
D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,
D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,
∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).
故选:A.
【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.
9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则( )
A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α
【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.
解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.
【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.
不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,
=,=(0,3,6),=(,6,0),=,
=.
设平面PDR的法向量为=(x,y,z),则,可得,
可得=,取平面ABC的法向量=(0,0,1).
则cos==,取α=arccos.
同理可得:β=arccos.γ=arccos.
∵>>.
∴α<γ<β.
解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.
设OD=h.
则tanα=.
同理可得:tanβ=,tanγ=.
由已知可得:OE>OG>OF.
∴tanα<tanγ<tanβ,α,β,γ为锐角.
∴α<γ<β.
故选:B.
【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.
10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则( )
A.I1<I2<I3 B.I1<I3<I2 C.I3<I1<I2 D.I2<I1<I3
【分析】根据向量数量积的定义结合图象边角关系进行判断即可.
【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,
∴AC=2,
∴∠AOB=∠COD>90°,
由图象知OA<OC,OB<OD,
∴0>•>•,•>0,
即I3<I1<I2,
故选:C.
【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .
【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
【解答】解:如图所示,
单位圆的半径为1,则其内接正六边形ABCDEF中,
△AOB是边长为1的正三角形,
所以正六边形ABCDEF的面积为
S6=6××1×1×sin60°=.
故答案为:.
【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.
12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5 ,ab= 2 .
【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.
【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),
∴3+4i=a2﹣b2+2abi,
∴3=a2﹣b2,2ab=4,
解得ab=2,,.
则a2+b2=5,
故答案为:5,2.
【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.
13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= 16 ,a5= 4 .
【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积.
【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,
(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,
a4=3×4+1×4=16;
a5=1×4=4.
故答案为:16;4.
【点评】本题考查二项式定理的应用,考查计算能力,是基础题.
14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是 ,cos∠BDC= .
【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC,再根据S△BDC=S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出
【解答】解:如图,取BC得中点E,
∵AB=AC=4,BC=2,
∴BE=BC=1,AE⊥BC,
∴AE==,
∴S△ABC=BC•AE=×2×=,
∵BD=2,
∴S△BDC=S△ABC=,
∵BC=BD=2,
∴∠BDC=∠BCD,
∴∠ABE=2∠BDC
在Rt△ABE中,
∵cos∠ABE==,
∴cos∠ABE=2cos2∠BDC﹣1=,
∴cos∠BDC=,
故答案为:,
【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题
15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是 4 ,最大值是 .
【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.
【解答】解:记∠AOB=α,则0≤α≤π,如图,
由余弦定理可得:
|+|=,
|﹣|=,
令x=,y=,
则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,
令z=x+y,则y=﹣x+z,
则直线y=﹣x+z过M、N时z最小为zmin=1+3=3+1=4,
当直线y=﹣x+z与圆弧MN相切时z最大,
由平面几何知识易知zmax即为原点到切线的距离的倍,
也就是圆弧MN所在圆的半径的倍,
所以zmax=×=.
综上所述,|+|+|﹣|的最小值是4,最大值是.
故答案为:4、.
【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.
16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 660 种不同的选法.(用数字作答)
【分析】由题意分两类选1女3男或选2女2男,再计算即可
【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,
第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,
根据分类计数原理共有480+180=660种,
故答案为:660
【点评】本题考查了分类计数原理和分步计数原理,属于中档题
17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是 (﹣∞,] .
【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.
【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,
又因为|x+﹣a|≤5﹣a,
所以a﹣5≤x+﹣a≤5﹣a,
所以2a﹣5≤x+≤5,
又因为1≤x≤4,4≤x+≤5,
所以2a﹣5≤4,解得a≤,
故答案为:(﹣∞,].
【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.
三、解答题(共5小题,满分74分)
18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.
【分析】利用二倍角公式及辅助角公式化简函数的解析式,
(Ⅰ)代入可得:f()的值.
(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间
【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)
(Ⅰ)f()=2sin(2×+)=2sin=2,
(Ⅱ)∵ω=2,故T=π,
即f(x)的最小正周期为π,
由2x+∈[﹣+2kπ,+2kπ],k∈Z得:
x∈[﹣+kπ,﹣+kπ],k∈Z,
故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.
【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.
19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.
(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.
【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,
∵E为PD的中点,∴EF∥PA,
在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,
∴CF∥AB,∴平面EFC∥平面ABP,
∵EC⊂平面EFC,
∴EC∥平面PAB.
解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,
∵PA=PD,∴PF⊥AD,
推导出四边形BCDF为矩形,∴BF⊥AD,
∴AD⊥平面PBF,又AD∥BC,
∴BC⊥平面PBF,∴BC⊥PB,
设DC=CB=1,则AD=PC=2,∴PB=,
BF=PF=1,∴MF=,
又BC⊥平面PBF,∴BC⊥MF,
∴MF⊥平面PBC,即点F到平面PBC的距离为,
∵MF=,D到平面PBC的距离应该和MF平行且相等,为,
E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,
∴E到平面PBC的距离为,
在,
由余弦定理得CE=,
设直线CE与平面PBC所成角为θ,则sinθ==.
【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.
20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).
(1)求f(x)的导函数;
(2)求f(x)在区间[,+∞)上的取值范围.
【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;
(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.
【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),
导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x
=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;
(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,
可得f′(x)=0时,x=1或,
当<x<1时,f′(x)<0,f(x)递减;
当1<x<时,f′(x)>0,f(x)递增;
当x>时,f′(x)<0,f(x)递减,
且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,
则f(x)≥0.
由f()=e,f(1)=0,f()=e,
即有f(x)的最大值为e,最小值为f(1)=0.
则f(x)在区间[,+∞)上的取值范围是[0,e].
【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.
21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,
),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA|•|PQ|的最大值.
【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;
(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.
【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,
所以kAP==x﹣∈(﹣1,1),
故直线AP斜率的取值范围是:(﹣1,1);
(Ⅱ)由(I)知P(x,x2),﹣<x<,
所以=(﹣﹣x,﹣x2),
设直线AP的斜率为k,则AP:y=kx+k+,BQ:y=﹣x++,
联立直线AP、BQ方程可知Q(,),
故=(,),
又因为=(﹣1﹣k,﹣k2﹣k),
故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),
所以|PA|•|PQ|=(1+k)3(1﹣k),
令f(x)=(1+x)3(1﹣x),﹣1<x<1,
则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),
由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,
故f(x)max=f()=,即|PA|•|PQ|的最大值为.
【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.
22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤;
(Ⅲ)≤xn≤.
【分析】(Ⅰ)用数学归纳法即可证明,
(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,
(Ⅲ)由≥2xn+1﹣xn得﹣≥2(﹣)>0,继续放缩即可证明
【解答】解:(Ⅰ)用数学归纳法证明:xn>0,
当n=1时,x1=1>0,成立,
假设当n=k时成立,则xk>0,
那么n=k+1时,若xk+1<0,则0<xk=xk+1+ln(1+xk+1)<0,矛盾,
故xn+1>0,
因此xn>0,(n∈N*)
∴xn=xn+1+ln(1+xn+1)>xn+1,
因此0<xn+1<xn(n∈N*),
(Ⅱ)由xn=xn+1+ln(1+xn+1)得xnxn+1﹣4xn+1+2xn=xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1),
记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0
∴f′(x)=+ln(1+x)>0,
∴f(x)在(0,+∞)上单调递增,
∴f(x)≥f(0)=0,
因此xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1)≥0,
故2xn+1﹣xn≤;
(Ⅲ)∵xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1,
∴xn≥,
由≥2xn+1﹣xn得﹣≥2(﹣)>0,
∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,
∴xn≤,
综上所述≤xn≤.
【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题