• 250.00 KB
  • 2021-05-13 发布

高考真题——数学理北京卷Word学生版

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2017年普通高等学校招生全国统一考试 数 学(理)(北京卷)‎ 第一部分(选择题 共40分)‎ 一、选择题共8小题,每小题5分,共40分。‎ ‎(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=( )‎ ‎(A){x|–2x–1} (B){x|–2x3}‎ ‎(C){x|–1x1} (D){x|1x3}‎ ‎(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )‎ ‎(A)(–∞,1) (B)(–∞,–1)‎ ‎(C)(1,+∞) (D)(–1,+∞)‎ ‎(3)执行如图所示的程序框图,输出的s值为( )‎ ‎(A)2 (B) (C) (D)‎ ‎(4)若x,y满足 则x + 2y的最大值为( )‎ ‎(A)1 (B)3‎ ‎(C)5 (D)9‎ ‎(5)已知函数,则( )‎ ‎ (A)是奇函数,且在R上是增函数 (B)是偶函数,且在R上是增函数 ‎ (C)是奇函数,且在R上是减函数 (D)是偶函数,且在R上是减函数 ‎(6)设m,n为非零向量,则“存在负数,使得”是“”的( )‎ ‎ (A)充分而不必要条件 (B)必要而不充分条件 ‎ (C)充分必要条件 (D)既不充分也不必要条件 ‎(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )‎ ‎(A)3 (B)2 ‎ ‎ (C)2 (D)2‎ ‎(8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是( ) (参考数据:lg3≈0.48)‎ ‎(A)1033 (B)1053  (C)1073 (D)1093‎ 第二部分(非选择题 共110分)‎ 二、填空题共6小题,每小题5分,共30分。‎ ‎(9)若双曲线的离心率为,则实数m=_________.‎ ‎(10)若等差数列和等比数列满足a1=b1=–1,a4=b4=8,则=_______.‎ ‎(11)在极坐标系中,点A在圆上,点P的坐标为(1,0),则|AP|的最小值为___________.‎ ‎(12)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,=___________.‎ ‎(13)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.‎ ‎(14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.‎ ‎①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.‎ ‎②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.‎ 三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。‎ ‎(15)(本小题13分)在△ABC中, =60°,c=a.‎ ‎(Ⅰ)求sinC的值;‎ ‎(Ⅱ)若a=7,求△ABC的面积.‎ ‎(16)(本小题14分) 如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.‎ ‎(I)求证:M为PB的中点;‎ ‎(II)求二面角B-PD-A的大小;‎ ‎(III)求直线MC与平面BDP所成角的正弦值.‎ ‎(17)(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示为服药者.‎ ‎(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;‎ ‎(Ⅱ)从图中A,B,C,D四人中随机KS5U.选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();学¥科网 ‎(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)‎ ‎(18)(本小题14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.‎ ‎(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;‎ ‎(Ⅱ)求证:A为线段BM的中点.‎ ‎(19)(本小题13分)已知函数f(x)=excosx−x.‎ ‎(Ⅰ)求曲线y= f(x)在点(0,f(0))处的切线方程;‎ ‎(Ⅱ)求函数f(x)在区间[0,]上的最大值和最小值.‎ ‎(20)(本小题13分)设和是两个等差数列,记 ‎,‎ 其中表示这个数中最大的数.‎ ‎(Ⅰ)若,,求的值,并证明是等差数列;‎ ‎(Ⅱ)证明:或者对任意正数,存在正整数,当时,;或者存在正整数,使得是等差数列.‎ ‎ ‎