- 135.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年高考数学(理科)模拟试卷(二)
(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)
第Ⅰ卷(选择题 满分60分)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=( )
A.{0,1} B.{0,1,2}
C.{-1,0,1} D.{-1,0,1,2}
2.已知z为纯虚数,且z(2+i)=1+ai3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M21.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )
A.各月的平均最低气温都在0 ℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均气温高于20 ℃的月份有5个
图M21 图M22
4.已知平面向量a=(1,2),b=(-2,k),若a与b共线,则=( )
A.3 B.4 C. D.5
5.函数y=x2-ln x的单调递减区间为( )
A.(-1,1] B.(0,1]
C.[1,+∞) D.(0,+∞)
6.阅读如图M22所示的程序框图,运行相应的程序,则输出的结果为( )
A.2 B.1 C.0 D.-1
7.(2014年新课标Ⅱ)如图M23,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
图M23
A. B. C. D.
8.已知F1,F2分别为双曲线E:-=1(a>0,b>0)的左、右焦点,离心率为,过原点的直线l交双曲线左、右两支分别于A,B,若|BF1|-|AF1|=6,则该双曲线的标准方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
9.若函数f(x)=的最小值为f(0),则实数a的取值范围是( )
A.[-1,2] B.[-1,0]
C.[1,2] D.[0,2]
10.已知变量x,y满足则的取值范围是( )
A. B.
C. D.
11.在区间上随机取一个数x,cos x的值介于0到之间的概率为( )
A. B. C. D.
12.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:
(ⅰ)对任意的x∈[0,1],恒有f(x)≥0;(ⅱ)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.则下列四个函数中不是M函数的个数是( )
①f(x)=x2;②f(x)=x2+1;③f(x)=ln(x2+1);④f(x)=2x-1.
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 满分90分)
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分.
13.椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c,若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于__________.
14.(2016年天津)8的展开式中x7的系数为________.(用数字作答)
15.已知正方体ABCDA1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.
16.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=________.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)(2016年浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.
(1)证明:A=2B;
(2)若cos B=,求cos C的值.
18.(本小题满分12分)(2016年云南统测)
某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.
(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A,求事件A的概率P(A);
(2)设X为选出的4人中女生的人数,求随机变量X的分布列和数学期望.
19.(本小题满分12分)(2016年浙江)如图M24,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求证:BF⊥平面ACFD;
(2)求二面角BADF的平面角的余弦值.
图M24
20.(本小题满分12分)(2016年山东)如图M25,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过点P且垂直于x轴的直线交于点M.
(ⅰ)求证:点M在定直线上;
(ⅱ)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.
图M25
21.(本小题满分12分)设函数f(x)=(ax2+x-1)ex(a<0).
(1)讨论f(x)的单调性;
(2)当a=-1时,函数y=f(x)与g(x)=x3+x2+m的图象有三个不同的交点,求实数m的取值范围.
请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.
22.(本小题满分10分)选修44:坐标系与参数方程
已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A、B,求|MA|·|MB|的值.
23.(本小题满分10分)选修45:不等式选讲
已知函数f(x)=|x+a|+|x-2|.
(1)当a=-4时,求不等式f(x)≥6的解集;
(2)若f(x)≤|x-3|的解集包含[0,1],求实数a的取值范围.
2018年高考数学(理科)模拟试卷(二)
1.C 解析:由A={x|-20,f(x)=x++a≥2+a,∵f(x)min=f(0),
∴2+a≥f(0)=a2.解得-1≤a≤2.∴0≤a≤2.
10.B 解析:根据题意作出不等式组所表示的可行域如图D193阴影部分,即△ABC的边界及其内部,又因为=1+,而表示可行域内一点(x,y)和点P(-2,-1)连线的斜率,由图可知kPB≤≤kPC,根据原不等式组解得B(2,0),C(0,2).
所以≤≤⇒≤≤
⇒≤≤.故选B.
图D193
11.A 解析:x∈,cos x的值介于0到之间,
利用三角函数性质解得x∈∪,在上随机取一个数是等可能的,结合几何概型的概率公式可得所求概率为p==.
12.A 解析:(ⅰ)在[0,1]上,四个函数都满足;
(ⅱ)x1≥0,x2≥0,x1+x2≤1;
对于①,f(x1+x2)-[f(x1)+f(x2)]
=(x1+x2)2-(x+x)=2x1x2≥0,满足;
对于②,f(x1+x2)-[f(x1)+f(x2)]=[(x1+x2)2+1]-[(x+1)+(x+1)]=2x1x2-1<0,不满足.
对于③,f(x1+x2)-[f(x1)+f(x2)]
=ln[(x1+x2)2+1]-[ln(x+1)+ln(x+1)]
=ln[(x1+x2)2+1]-ln[(x+1)(x+1)]
=ln =ln ,
而x1≥0,x2≥0,∴1≥x1+x2≥2.∴x1x2≤.∴xx≤x1x2≤2x1x2.
∴≥1.∴ln ≥0,满足;
对于④,f(x1+x2)-[f(x1)+f(x2)]
=(2x1+x2-1)-(2x1-1+2x2-1)
=2x12x2-2x1-2x2+1=(2x1-1)(2x2-1)≥0,满足.故选A.
13.-1 解析:由直线方程y=(x+c)⇒直线与x轴的夹角∠MF1F2=或,且过点F1(-c,0),∵∠MF1F2=2∠MF2F1,∴∠MF1F2=2∠MF2F1=,即F1M⊥F2M.∴在
Rt△F1MF2中,F1F2=2c,F1M=c,F2M=c.∴由椭圆的第一定义可得2a=c+c,∴==-1.
14.-56 解析:展开式通项为Tr+1=C(x2)8-r·r=(-1)rCx16-3r,令16-3r=7,r=3,所以x7的(-1)3C=-56.故答案为-56.
15. 解析:如图D194,连接DF,
图D194
则AE∥DF.
∴∠D1FD即为异面直线AE与D1F所成的角.
设正方体棱长为a,则D1D=a,DF=a,D1F=a,
∴cos ∠D1FD==.
16.63 解析:设等比数列{an}的首项为a,公比为q,易知q≠1.根据题意可得解得q2=4,=-1.所以S6==(-1)(1-43)=63.
17.解:(1)由正弦定理,得sin B+sin C=2sin Acos B.
故2sin Acos B=sin B+sin(A+B)
=sin B+sin Acos B+cos Asin B.
于是,sin B=sin(A-B),
又A,B∈(0,π),故00),由x2=2y,可得y′=x.
所以直线l的斜率为m.
因此直线l的方程为y-=m(x-m),即y=mx-.
设A(x1,y1),B(x2,y2),D(x0,y0),
联立方程
得(4m2+1)x2-4m3x+m4-1=0.
由Δ>0,得00,
所以点P的坐标为,因此的最大值为,此时点P的坐标为.
21.解:(1)f′(x)=[ax2+(2a+1)x]ex=x(ax+2a+1)ex(a<0),令f′(x)=0,解得x1=0,x2=-2-.
①当a=-时,f′(x)=-x2ex≤0,f(x)在(-∞,+∞)上递减;
②当-