- 149.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2 第二节 动量守恒定律 碰撞 爆炸 反冲
(建议用时:60分钟)
一、选择题
1.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东,则另一块的速度是( )
A.3v0-v B.2v0-3v
C.3v0-2v D.2v0+v
解析:选C.在最高点水平方向动量守恒,由动量守恒定律可知,3mv0=2mv+mv′,可得另一块的速度为v′=3v0-2v,对比各选项可知,答案选C.
2.
一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为( )
A.v0-v2 B.v0+v2
C.v0-v2 D.v0+(v0-v2)
解析:选D.对火箭和卫星由动量守恒定律得(m1+m2)v0=m2v2+m1v1,解得v1==v0+·(v0-v2).
3.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )
A. v0 B. v0
C. v0 D. v0
解析:选D.应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:0=mv0-(M-m)v′故v′=,选项D正确.
4.在光滑的水平面上,有a、b两球,
6
其质量分别为ma、mb,两球在t0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度图象如图所示,下列关系正确的是( )
A.ma>mb B.ma<mb
C.ma=mb D.无法判断
解析:选B.由题图可知b球碰前静止,取a球碰前速度方向为正方向,设a球碰前速度为v0,碰后速度为v1,b球碰后速度为v2,两球碰撞过程中动量守恒,机械能守恒,则
mav0=mav1+mbv2 ①
mav=mav+mbv ②
联立①②得:v1= v0,v2= v0
由a球碰撞前后速度方向相反,可知v1<0,即ma<mb,故B正确.
5.一中子与一质量数为A (A>1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )
A. B.
C. D.
解析:选A.设中子的质量为m,则被碰原子核的质量为Am,两者发生弹性碰撞,据动量守恒,有mv0=mv1+Amv′,据动能守恒,有mv=mv+Amv′2.解以上两式得v1=v0.若只考虑速度大小,则中子的速率为v′1=v0,故中子碰撞前、后速率之比为.
6.
如图所示,一质量M=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小木块A,同时给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板,在小木块A做加速运动的时间内,木板速度大小可能是( )
A.2.1 m/s B.2.4 m/s
C.2.8 m/s D.3.0 m/s
解析:选AB.以A、B组成的系统为研究对象,系统动量守恒,
6
取水平向右方向为正方向,从A开始运动到A的速度为零过程中,由动量守恒定律得:(M-m)v0=MvB1,代入数据解得:vB1=2.67 m/s,当从开始到A、B速度相同的过程中,取水平向右方向为正方向,由动量守恒定律得:(M-m)v0=(M+m)vB2,代入数据解得:vB2=2 m/s,则在木块A正在做加速运动的时间内B的速度范围为:2 m/s<vB<2.67 m/s,故选项A、B正确.
7.
如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( )
A.该碰撞为弹性碰撞
B.该碰撞为非弹性碰撞
C.左方是A球,碰撞后A、B两球速度大小之比为2∶5
D.右方是A球,碰撞后A、B两球速度大小之比为1∶10
解析:选AC.由mB=2mA,pA=pB知碰前vB<vA,若右方为A球,由于碰前动量都为6 kg·m/s,即都向右运动,两球不可能相碰;若左方为A球,设碰后二者速度分别为v′A、v′B,由题意知p′A=mAv′A=2 kg·m/s,p′B=mBv′B=10 kg·m/s,解得=.碰撞后A球动量变为2 kg·m/s,B球动量变为10 kg·m/s,又mB=2mA,由计算可知碰撞前后A、B两球动能之和不变,即该碰撞为弹性碰撞,选项A、C正确.
8.
质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )
A.mv2 B.v2
C.NμmgL D.NμmgL
解析:选BD.设系统损失的动能为ΔE,根据题意可知,整个过程中小物块和箱子构成的系统满足动量守恒和能量守恒,则有mv=(M+m)vt(①式)、mv2=(M+m)v+ΔE(②式),由①②联立解得ΔE=v2,可知选项A错误、B正确;又由于小物块与箱壁碰撞为弹性碰撞,
6
则损耗的能量全部用于摩擦生热,即ΔE=NμmgL,选项C错误、D正确.
二、非选择题
9.在核反应堆中用石墨做慢化剂使中子减速,中子以一定速度与静止的碳核发生正碰,碰后中子反向弹回,此时碳核的动量________中子的动量;碰后中子的速率________碰前中子的速率.(均填“大于”“等于”或“小于”)
解析:设中子和碳核的质量分别为m和M,中子的初速度为v0,碰后中子的速度为-v1,碳核的速度为v2,根据动量守恒定律有mv0=-mv1+Mv2,所以Mv2=m(v0+v1),可见碳核的动量大于中子的动量;由能量守恒定律可知mv=mv+Mv,碰后中子的动能一部分转化为碳核的动能,故碰后中子的速率小于碰前中子的速率.
答案:见解析
10.
如图,三个质量相同的滑块A、B、C,间隔相等地静置于同一水平直轨道上.现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后A、B分别以v0、v0的速度向右运动,B再与C发生碰撞,碰后B、C粘在一起向右运动.滑块A、B与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求B、C碰后瞬间共同速度的大小.
解析:设滑块质量为m,A与B碰撞前A的速度为vA,由题意知,碰撞后A的速度v′A=v0,B的速度vB=v0,由动量守恒定律得
mvA=mv′A+mvB ①
设碰撞前A克服轨道阻力所做的功为WA,由能量守恒定律得
WA=mv-mv ②
设B与C碰撞前B的速度为v′B,B克服轨道阻力所做的功为WB,由能量守恒定律得
WB=mv-mv′ ③
据题意可知
WA=WB ④
设B、C碰撞后瞬间共同速度的大小为v,由动量守恒定律得
mv′B=2mv ⑤
联立①②③④⑤式,代入数据得v=v0.
答案:v0
11.
6
如图所示,一质量M=2 kg的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B.从弧形轨道上距离水平轨道高h=0.3 m处由静止释放一质量mA=1 kg的小球A,小球A沿轨道下滑后与小球B发生弹性正碰,碰后小球A被弹回,且恰好追不上平台.已知所有接触面均光滑,重力加速度为g.求小球B的质量.(取重力加速度g=10 m/s2)
解析:设小球A下滑到水平轨道上时的速度大小为v1,平台水平速度大小为v,由动量守恒定律有
0=mAv1-Mv
由能量守恒定律有mAgh=mAv+Mv2
联立解得v1=2 m/s,v=1 m/s
小球A、B碰后运动方向相反,设小球A、B的速度大小分别为v′1和v2.由于碰后小球A被弹回,且恰好追不上平台,则此时小球A的速度等于平台的速度,有
v′1=1 m/s
由动量守恒定律得mAv1=-mAv′1+mBv2
由能量守恒定律有mAv=mAv′+mBv
联立上式解得mB=3 kg.
答案:3 kg
12.
如图,质量分别为mA、mB的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰.碰撞时间极短,碰后瞬间A球的速度恰好为零.已知mB=3mA,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失.求:
(1)B球第一次到达地面时的速度;
(2)P点距离地面的高度.
解析:(1)设B球第一次到达地面时的速度大小为vB,由运动学公式有vB= ①
6
将h=0.8 m代入上式,得vB=4 m/s. ②
(2)设两球相碰前后,A球的速度大小分别为v1和v′1(v′1=0),B球的速度分别为v2和v′2.由运动学规律可得v1=gt ③
由于碰撞时间极短,重力的作用可以忽略,两球相撞前后的动量守恒,总动能保持不变.规定向下的方向为正,有
mAv1+mBv2=mBv′2 ④
mAv+mBv=mBv′ ⑤
设B球与地面相碰后的速度大小为v′B,由运动学及碰撞的规律可得v′B=vB ⑥
设P点距地面的高度为h′,由运动学规律可得
h′= ⑦
联立②③④⑤⑥⑦式,并代入已知条件可得
h′=0.75 m.
答案:(1)4 m/s (2)0.75 m
6
相关文档
- 上海高中高考化学重要知识点总结完2021-05-1354页
- 高中数学高考总复习平面向量的数量2021-05-1313页
- 2020版高中数学 第二章 算法初步 22021-05-136页
- 高考英语高中英语语法之名词性从句2021-05-1312页
- 高考数学第九章平面解析几何第9课2021-05-139页
- 高中数学三年高考20162018数学理分2021-05-135页
- 高考数学平面向量与复数时复数更多2021-05-137页
- 全国通用高中数学高考知识点总结2021-05-1365页
- 河南省普通高中高考数学毕业班适应2021-05-1312页
- 高考一轮复习高中数学立体几何知识2021-05-1310页