- 225.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年安徽省高考数学试卷(理科)
参考答案与试题解析
一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)
1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于( )
A.
第一象限
B.
第二象限
C.
第三象限
D.
第四象限
2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是( )
A.
y=cosx
B.
y=sinx
C.
y=lnx
D.
y=x2+1
3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的( )
A.
充分不必要条件
B.
必要不充分条件
C.
充分必要条件
D.
既不充分也不必要条件
4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( )
A.
x2﹣=1
B.
﹣y2=1
C.
﹣x2=1
D.
y2﹣=1
5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )
A.
若α,β垂直于同一平面,则α与β平行
B.
若m,n平行于同一平面,则m与n平行
C.
若α,β不平行,则在α内不存在与β平行的直线
D.
若m,n不平行,则m与n不可能垂直于同一平面
6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为( )
A.
8
B.
15
C.
16
D.
32
7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )
A.
1+
B.
2+
C.
1+2
D.
2
8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( )
A.
||=1
B.
⊥
C.
•=1
D.
(4+)⊥
9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是( )
A.
a>0,b>0,c<0
B.
a<0,b>0,c>0
C.
a<0,b>0,c<0
D.
a<0,b<0,c<0
10.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是( )
A.
f(2)<f(﹣2)<f(0)
B.
f(0)<f(2)<f(﹣2)
C.
f(﹣2)<f(0)<f(2)
D.
f(2)<f(0)<f(﹣2)
二.填空题(每小题5分,共25分)
11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是 (用数字填写答案)
12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 .
13. (5分)(2015•安徽)执行如图所示的程序框图(算法流
程图),输出的n为
14. (5分)(2015•安徽)已知数列{an}是递增的等比数列,
a1+a4=9,a2a3=8,则数列{an}的前n项和等于 .
14. (5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,
下列条件中,使得该三次方程仅有一个实根的是
(写出所有正确条件的编号)
①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.
④a=0,b=2.⑤a=1,b=2.
三.解答题(共6小题,75分)
16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.
17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;
(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)
18.(12分)(2015•安徽)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.
19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.
(Ⅰ)证明:EF∥B1C;
(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.
20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为
(Ⅰ)求E的离心率e;
(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.
21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.
(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;
(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;
(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.
答案:
1、
解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,
故选:B.
2、
解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;
对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;
对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;
对于D,定义域为R,为偶函数,都是没有零点;
故选A.
3、
解:由1<x<2可得2<2x<4,则由p推得q成立,
若2x>1可得x>0,推不出1<x<2.
由充分必要条件的定义可得p是q成立的充分不必要条件.
故选A.
4、
解:由A可得焦点在x轴上,不符合条件;
由B可得焦点在x轴上,不符合条件;
由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;
由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.
故选C.
5、
解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;
对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;
对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;
对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;
故选D.
6、
解:∵样本数据x1,x2,…,x10的标准差为8,
∴=8,即DX=64,
数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,
则对应的标准差为==16,
故选:C.
7、
解:根据几何体的三视图,得;
该几何体是底面为等腰直角三角形的三棱锥,如图所示;
∴该几何体的表面积为
S表面积=S△PAC+2S△PAB+S△ABC
=×2×1+2××+×2×1
=2+.
故选:B.
8、
解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,
所以,,
所以=2,=1×2×cos120°=﹣1,
4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;
故选D.
9、
解:函数在P处无意义,即﹣c>0,则c<0,
f(0)=,∴b>0,
由f(x)=0得ax+b=0,即x=﹣,
即函数的零点x=﹣>0,
∴a<0,
综上a<0,b>0,c<0,
故选:C
10、
解:依题意得,函数f(x)的周期为π,
∵ω>0,
∴ω==2.(3分)
又∵当x=时,函数f(x)取得最小值,
∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)
∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分)
∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.
f(2)=Asin(4+)<0
f(0)=Asin=Asin>0
又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,
∴f(2)<f(﹣2)<f(0)
故选:A.
11、
解:根据所给的二项式写出展开式的通项,
Tr+1==;
要求展开式中含x5的项的系数,
∴21﹣4r=5,
∴r=4,可得:=35.
故答案为:35.
12、
解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.
直线θ=(ρ∈R)化为y=x.
∴圆心C(0,4)到直线的距离d==2,
∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.
故答案为:6.
13、
解:模拟执行程序框图,可得
a=1,n=1
满足条件|a﹣1.414|>0.005,a=,n=2
满足条件|a﹣1.414|>0.005,a=,n=3
满足条件|a﹣1.414|>0.005,a=,n=4
不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.
故答案为:4.
14、
解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8,
可得a1a4=8,解得a1=1,a4=8,
∴8=1×q3,q=2,
数列{an}的前n项和为:=2n﹣1.
故答案为:2n﹣1.
15、
解:设f(x)=x3+ax+b,f'(x)=3x2+a,
①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1
时f(1)=﹣5,f(﹣1)=﹣1;
并且x>1或者x<﹣1时f'(x)>0,
所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,
所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实
根;如图
②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图
③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)
=﹣2+b>0,函数图象形状如图②,所以方程
x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)
=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增
函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,
b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立
,故原函数在R上是增函数;故方程方程x3+ax+b=0只
有一个根;综上满足使得该三次方程仅有一个实根的是
①③④⑤.故答案为:①③④⑤.
16、
解:∵∠A=,AB=6,AC=3,
∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.
∴BC=3…4分
∵在△ABC中,由正弦定理可得:,
∴sinB=,
∴cosB=…8分
∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,
∴Rt△ADE中,AD===…12分
17、
解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,
则P(A)==.
(Ⅱ)X的可能取值为:200,300,400
P(X=200)==.
P(X=300)==.
P(X=400)=1﹣P(X=200)﹣P(X=300)=.
X的分布列为:
X
200
300
400
P
EX=200×+300×+400×=350.
18、
解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,
从而切线方程为y﹣2=(2n+2)(x﹣1)
令y=0,解得切线与x轴的交点的横坐标为,
(2)证明:由题设和(1)中的计算结果可知:
Tn=x12x32…x2n﹣12=,
当n=1时,,
当n≥2时,因为x2n﹣12==>==,
所以Tn
综上所述,可得对任意的n∈N+,均有
19、
(Ⅰ)证明:∵B1C=A1D且A1B1=CD,
∴四边形A1B1CD为平行四边形,
∴B1C∥A1D,
又∵B1C⊄平面A1EFD,
∴B1C∥平面A1EFD,
又∵平面A1EFD∩平面B1CD1=EF,
∴EF∥B1C;
(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,
∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,
设平面A1EFD的一个法向量为=(x,y,z),
又∵=(0,2,﹣2),=(1,1,0),
∴,,
取y=1,得=(﹣1,1,1),
∴cos<,>==,
∴二面角E﹣A1D﹣B1的余弦值为.
20、
解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,
∵A(a,0),B(0,b),∴=.
∵,∴,a=b.
∴=.
(II)由(I)可得直线AB的方程为:=1,N.
设点N关于直线AB的对称点为S,线段NS的中点T,
又AB垂直平分线段NS,∴,解得b=3,
∴a=3.
∴椭圆E的方程为:.
21、
解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,
即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,
①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;
当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.
即有a≥2或a≤﹣2时,不存在极值.
②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;
<t<1,f′(t)>0,f(sinx)递增.
f(sinx)有极小值f()=b﹣;
(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0|
当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;
当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.
由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.
(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1
取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.
由此可知,z=b﹣满足条件D≤1的最大值为1.