- 457.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013年高考化学试题分类解析汇编:电化学基础
(2013大纲卷)9、电解法处理酸性含铬废水(主要含有Cr2O72-)时,以铁板作阴、阳极,处理过程中存在反应Cr2O72+6Fe2++14H+2Cr3++6Fe3++7H2O,最后Cr3+以Cr(OH)3形式除去,下列说法不正确的是
A.阳极反应为Fe-2e-Fe2+ B.电解过程中溶液pH不会变化
C.过程中有Fe(OH)3沉淀生成 D.电路中每转移12 mol电子,最多有1 mol Cr2O72-被还原
【答案】B
【解析】根据总方程式可得酸性减弱,B错误。阳-yang-氧,↑失氧,A正确;Fe-2e-=Fe2+~~~~2e-,则6mol的铁发生变化时候转移电子数12mol,又据能够处理的关系式,得6Fe~~~~12e-~~~6Fe2+~~~Cr2O72-,所以D正确。在阴极,发生还原反应,↓得还,溶液中的氢离子得到电子减少,同时生成氢氧根,C正确。
(2013江苏卷)9.Mg-H2O2电池可用于驱动无人驾驶的潜航器。该电池以海水为电解质溶液,示意图如下。该电池工作时,下列说法正确的是
A.Mg电极是该电池的正极
B.H2O2在石墨电极上发生氧化反应
C.石墨电极附近溶液的pH增大
D.溶液中Cl-向正极移动
【参考答案】C
【解析】本题是电化学基础的一条简单综合题,着力考查学生对原电池基础知识的理解能力。
A.组成的原电池的负极被氧化,镁为负极,而非正极。
B、C.双氧水作为氧化剂,在石墨上被还原变为水,溶液PH值增大。
D.溶液中Cl-移动方向同外电路电子移动方向一致,应向负极方向移动。
(2013海南卷)4.Mg-AgCl电池是一种能被海水激活的一次性贮备电池,电池反应方程式为:
2AgCl+ Mg = Mg2++ 2Ag +2Cl-。有关该电池的说法正确的是
A.Mg为电池的正极
B.负极反应为AgCl+e-=Ag+Cl-
C.不能被KCl 溶液激活
D.可用于海上应急照明供电
[答案]D
[解析]:根据氧化还原判断,Mg为还原剂是负极、失电子,所以A、B都错,C是指电解质溶液可用KCl 溶液代替。
(2013海南卷)12.下图所示的电解池I和II中,a、b、c和d均为Pt电极。电解过程中,电极b和d上没有气体逸出,但质量均增大,且增重b>d。符合上述实验结果的盐溶液是
选项
X
Y
A.
MgSO4
CuSO4
B.
AgNO3
Pb(NO3)2
C.
FeSO4
Al2 (SO4)3
D.
CuSO4
AgNO3
[答案]D
[解析]:题意表明b、d没有气体逸出,所电解的盐溶液中金属元素,应该在金属活动顺序表中(H)以后,只有D符合题意。
(2013上海卷)8.糕点包装中常见的脱氧剂组成为还原性铁粉、氯化钠、炭粉等,其脱氧原理与钢铁的吸氧腐蚀相同。下列分析正确的是
A.脱氧过程是吸热反应,可降低温度,延长糕点保质期
B.脱氧过程中铁作原电池正极,电极反应为:Fe-3e→Fe3+
C.脱氧过程中碳做原电池负极,电极反应为:2H2O+O2+4e→4OH-
D.含有1.12g铁粉的脱氧剂,理论上最多能吸收氧气336mL(标准状况)
答案:D
【解析】在脱氧过程中,由铁、碳做电极,氯化钠溶液做电解质溶液形成原电池,发生吸氧腐蚀,该过程为放热反应;在脱氧过程中,碳做正极,铁做负极,失电子发生氧化反应生成Fe2+;在脱氧过程中,Fe失电子氧化为Fe2+,Fe2+最终还是被氧气氧化为Fe3+,由电子守恒知消耗氧化剂氧气的体积(标况下)V(O2)=22.4L·mol-1×(3×1.12g/56g·mol-1)/4=336mL。
(2013安徽卷)10.热激活电池可用作火箭、导弹的工作电源。一种热激活电池的基本结构如图所示,其中作为电解质的无水LiCl-KCl混合物受热熔融后,电池即可瞬间输出电能。该电池总反应为:PbSO4+2LiCl+Ca =CaCl2+Li2SO4+Pb。下列有关说法正确的是
A.正极反应式:Ca+2Cl- - 2e- =CaCl2
B.放电过程中,Li+向负极移动
C.每转移0.1mol电子,理论上生成20.7gPb
D.常温时,在正负极间接上电流表或检流计,指针不偏转
【答案】D
【解析】A、正极发生还原反应,故为,错误;B、放电过程为原电池,阳离子向正极移动,错误;C、每转移0.1mol电子,生成0.05molPb,为10.35g,错误;D常温下,电解质不能融化,不能形成原电池,故指针不偏转,正确。
【考点定位】考查化学基本理论,电极判断、电极反应方程式的书写、离子流动方向以及简单计算。
(2013新课标卷2)11.“ZEBRA”蓄电池的结构如图所示,电极材料多孔Ni/NiCl2和金属钠之间由钠离子导体制作的陶瓷管相隔。下列关于该电池的叙述错误的是
A.电池反应中有NaCl生成
B.电池的总反应是金属钠还原三个铝离子
C.正极反应为:NiCl2+2e-=Ni+2Cl-
D.钠离子通过钠离子导体在两电极间移动
解析:考察原电池原理。原电池中较活泼的金属是负极,失去电子,发生氧化反应。电子经导线传递到正极,所以溶液中的阳离子向正极移动,正极得到电子,发生还原反应。据此可知负极是液体金属Na,电极反应式为:Na-e-=Na+;正极是Ni,电极反应式为NiCl2+2e-=Ni+2Cl-;总反应是2Na+NiCl2=2NaCl+Ni。所以A、C、D正确,B错误,选择B。
答案:B
(2013浙江卷)11、电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后,蓝色逐渐变浅。
已知:3I2+6OH—==IO3—+5I—+3H2O
下列说法不正确的是
A.右侧发生的电极方程式:2H2O+2e—==H2↑+2OH—
B.电解结束时,右侧溶液中含有IO3—
C.电解槽内发生反应的总化学方程式KI+3H2O=KIO3+3H2↑
D.如果用阳离子交换膜代替阴离子交换膜,电解槽内发生的总化学方程式不变
【解析】电解的电极反应为:阳极 2I——2e—== I2 左侧溶液变蓝色
3I2+6OH—==IO3—+5I—+3H2O 一段时间后,蓝色变浅
阴极 2H2O+2e—==H2↑+2OH— 右侧放出氢气
如果用阳离子交换膜代替阴离子交换膜:
电极反应为:阳极 2I——2e—== I2
阴极 2H2O+2e—==H2↑+2OH—
多余K+通过阳离子交换膜迁移至阴极保证两边溶液呈电中性,所以选项D不正确,答案选D。
答案:D
(2013天津卷)6、为增强铝的耐腐蚀性,现以铅蓄电池为外电源,以Al作阳极、Pb作阴极,电解稀硫酸,使铝表面的氧化膜增厚。其反应原理如下:
电池:Pb(s) + PbO2(s) + 2H2SO4(aq) =2PbSO4(s) + 2H2O(l)
电解池:2Al+3H2OAl2O3+3H2↑
电解过程中,以下判断正确的是
电池
电解池
A
H+移向Pb电极
H+移向Pb电极
B
每消耗3molPb
生成2molAl2O3
C
正极:PbO2+4H++2e=Pb2++2H2O
阳极:2Al+3H2O-6e=Al2O3+6H+
D
【解析】该题考查原电池和电解池的基本知识。A选项H+离子在原电池中移向PbO2电极,错误。B选项每消耗3molPb,根据电子守恒生成lmolAl2O3,错误。C选项在原电池的正极电极反应是生成PbSO4,错误。D选项在原电池中Pb电极的质量由于生成PbSO4,质量增加,在电解池中,Pb阴极,质量不变,正确。
答案:D
(2013北京卷)7.下列金属防腐的措施中,使用外加电流的阴极保护法的是
A.水中的钢闸门连接电源的负极 B.金属护拦表面涂漆
C.汽水底盘喷涂高分子膜 D.地下钢管连接镁块
【答案】A
【解析】
A、钢闸门连接电源的负极,为电解池的阴极,被保护,属于外加电流的阴极保护法,故正确;
BC、是金属表面覆盖保护层,隔绝空气,故错误
D、 镁比铁活泼,构成原电池,铁为正极,被保护,是牺牲阳极的阴极保护法,故错误。
(2013北京卷)9.用石墨电极电解CuCl2溶液(见右图)。下列分析正确的是
A.a端是直流电源的负极
B.通电使CuCl2发生电离
C.阳极上发生的反应:Cu2++2e-=Cu
D.通电一段时间后,在阴极附近观察到黄绿色气体
【答案】A
【解析】
A、由溶液中离子移动方向可知,U型管左侧电极是阴极,连接电源
的负极,a端是电源的负极,故正确;
B、通电使CuCl2发生电解,不是电离,故错误;
C、阳极发生氧化反应,Cl-在阳极放电2Cl--2e-=C12↑,故错误;
D、Cl-发生氧化反应,在阳极放电生成C12,故D错误。
(2013全国新课标卷1)10.银质器皿日久表面会逐渐变黑,这是生成了Ag2S的缘故,根据电化学原理可进行如下处理:在铝质容器中加入食盐溶液,再将变黑的银器浸入该溶液中,一段时间后发现黑色会褪去,下列说法正确的是
A、处理过程中银器一直保持恒重
B、银器为正极,Ag2S被还原生成单质银
C、该过程中总反应为2Al+3Ag2S=6Ag+Al2S3
D、黑色褪去的原因是黑色Ag2S转化为白色AgCl
答案:B
解析:A错,银器放在铝制容器中,由于铝的活泼性大于银,故铝为负极,失电子,银为正极,银表面的Ag2S得电子,析出单质银附着在银器的表面,故银器质量增加;
C错,Al2S3在溶液中不能存在,会发生双水解反应生成H2S和Al(OH)3;
D错,黑色褪去是Ag2S转化为Ag而不是AgCl
(2013全国新课标卷1)27.锂离子电池的应用很广,其正极材料可再生利用。某锂离子电池正极材料有钴酸锂(LiCoO2),导电剂乙炔黑和铝箔等。充电时,该锂离子电池负极发生的反应为6C+xLi++xe-=LixC6。现欲利用以下工艺流程回收正极材料中的某些金属资源 (部分条件未给出)
回答下列问题:
⑴LiCoO2 中,Co元素的化合价为___________。
⑵写出“正极碱浸”中发生反应的离子方程式_________________________________。
⑶“酸浸”一般在80 oC下进行,写出该步骤中发生的所有氧化还原反应的化学方程式__________________;可用盐酸代替H2SO4和H2O2的混合液,但缺点是_________。
⑷写出“沉钴”过程中发生反应的化学方程式_____________。
⑸充放电过程中发生LiCoO2与Li1-xCoO2之间的转化,写出放电时电池反应方程式___________________。
⑹上述工艺中“放电处理”有利于锂在正极的回收。其原因是___________________________。在整个回收工艺中,可回收的金属化合物有_________________(填化学式)。
答案:(1)+3;(2)2Al+2OH—+6H2O=2Al(OH)4—+3H2↑
(3)2LiCoO2+3H2SO4+H2O2Li2SO4+2CoSO4+O2↑+4H2O;2H2O22H2O+O2↑;有氯气生成,污染大
(4)CoSO4+2NH4HCO3=CoCO3↓+(NH4)2SO4+H2O+CO2↑
(5)Li1-xCoO2+LixC6=LiCoO2+6C
(6)Li+从负极中脱出,经电解质向正极移动并进入正极材料中;Al(OH)3、CoCO3、Li2SO4
解析:(1)Li和O元素的化合价分别是+1和-2价,所以该化合物中Co的化合价是+(2×2-1)=+3价。
(2)正极材料中的金属铝能和氢氧化钠溶液反应,反应的离子方程式是2Al+2OH—+6H2O=2Al(OH)4—+3H2↑。
(3)根据后面流程可知,有CoSO4生成,这说明在反应中LiCoO2是氧化剂,双氧水是还原剂,因此该反应的化学方程式是2LiCoO2+3H2SO4+H2O2Li2SO4+2CoSO4+O2↑+4H2O;在反应中双氧水是过量的,则过量的双氧水还会发生自身的氧化还原反应,即2H2O22H2O+O2↑;如果用盐酸代替,则氯化氢能被氧化生成氯气,会造成环境污染。
(4)根据原子守恒可知,在反应中还应该有硫酸铵、CO2和H2O生成,所以反应的化学方程式是CoSO4+2NH4HCO3=CoCO3↓+(NH4)2SO4+H2O+CO2↑。
(5)根据充电时,该锂离子电池负极发生的反应为6C+xLi++xe-=LixC6可知,放电时LixC6在负极失去电子,则Li1-xCoO2在正极得到电子,所以该反应式是Li1-xCoO2+LixC6=LiCoO2+6C。
(6)由于放电时Li+从负极中脱出,经电解质向正极移动并进入正极材料中,所以有利于锂在正极的回收;根据工艺流程图可知,在整个回收工艺中,可回收的金属化合物有Al(OH)3、CoCO3、Li2SO4。
(2013全国新课标卷1)28.二甲醚(CH3OCH3)是无色气体,可作为一种新型能源,由合成气(组成为H2、CO、和少量CO2)直接制备二甲醚,其中主要过程包括以下四个反应:
甲醇合成反应:
①CO(g)+ 2H2(g)=CH3OH(g) △H1=-90.1 kJ·mol-1
②CO2(g)+ 3H2(g)=CH3OH(g)+H2O(g) △H2=-49.0 kJ·mol-1
水煤气变换反应:
③CO(g) + H2O (g)=CO2(g)+H2(g) △H3=-41.1 kJ·mol-1
二甲醚合成反应:
④2CH3OH(g)=CH3OCH3(g)+H2O(g) △H4=-24.5 kJ·mol-1
⑴Al2O3是合成气直接制备二甲醚反应催化剂的主要成分之一。工业上从铝土矿制备较高纯度Al2O3的主要工艺流程是 (以化学方程式表示) 。
⑵分析二甲醚合成反应④对于CO转化率的影响 。
⑶由H2和CO直接制备二甲醚(另一产物为水蒸气)的热化学方程式为 。
⑷有研究者在催化剂(含Cu-Zn-Al-O和Al2O3),压强为5.0MPa的条件下由H2和CO直接制备二甲醚,结果如下图所示。其中CO转化率随温度升高而降低的原因是____________。
⑸二甲醚直接燃料电池具有启动快,效率高等优点,其能量密度高于甲醇直接燃烧燃料电池(5.93kW·h·kg-1),若电解质为酸性,二甲醚直接燃料电池的负极反应为_______________。
一个二甲醚分子经过电化学氧化,可以产生_______个电子的电量;该电池理论输出电压1.20V,能量密度E=_____(列式计算,能量密度=电池输出电能/燃料质量,1kW·h=3.6×105J )
答案:(1)Al2O3(铝土矿)+2NaOH+3H2O=2NaAl(OH)4;NaAlO2+CO2+2H2O=NaHCO3+Al(OH)3↓; 2Al(OH)3Al2O3+3H2O
(2)消耗甲醇,促进甲醇合成反应①平衡向右移,CO转化率增大;生成的H2O,通过水煤气变换反应③消耗部分CO。
(3)2CO(g)+4H2(g)=CH3OCH3(g)+H2O(g) ΔH=-204.7kJ/mol;该反应分子数减小,压强升高使平衡右移,CO和H2的转化率增大,CH3OCH3产率增加。压强升高使CO和H2的浓度增加,反应速率增大。
(4)反应放热,温度升高,平衡左移
(5)CH3OCH3-12e-+3H2O=2CO2+12H+;12
。
(1)工业上从铝土矿中提纯高纯度氧化铝的流程是:用氢氧化钠溶液溶解铝土矿,然后过滤,在滤液中通入过量的CO2,得到氢氧化铝,然后高温煅烧氢氧化铝,即可得到高纯度的氧化铝。
(2)合成二甲醚消耗甲醇,对于CO参与的反应相当于减小生成物的浓度,有利于平衡向右移动,使CO的转化率提高。
(3)根据盖斯定律可知,将①×2+④即得到反应2CO(g)+4H2(g)=CH3OCH3(g)+H2O(g),所以该反应的放热△H=-90.1 kJ/mol×2-24.5 kJ/mol=-204.7kJ/mol。
(4)该反应分子数减小,压强升高使平衡右移,CO和H2的转化率增大,CH3OCH3产率增加。压强升高使CO和H2的浓度增加,反应速率增大。
(5)原电池中负极失去电子,所以负极电极反应式是CH3OCH3-12e-+3H2O=2CO2+12H+;二甲醚中碳原子的化合价是-2价,反应后变为+4价,失去6个电子,所以一个二甲醚分子经过电化学氧化,可以产生12个电子的电量;由于能量密度=电池输出电能/燃料质量,所以该电池的能量密度=
。
(2013北京卷)26.(14分)
NOx是汽车尾气中的主要污染物之一。
(1) NOx能形成酸雨,写出NO2转化为HNO3的化学方程式:_ .
(2)汽车发动机工作时会引发N2和02反应,其能量变化示意图如下:
①写出该反应的热化学方程式: _ 。
②随温度升高,该反应化学平衡常数的变化趋势是_ 。
(3)在汽车尾气系统中装置催化转化器,可有效降低NOX的排放。
①当尾气中空气不足时,NOX在催化转化器中被还原成N2排出。写出NO被CO还原的化学方程式:_ 。
② 当尾气中空气过量时,催化转化器中的金属氧化物吸收NOX生成盐。其吸收能力顺序如下:12MgO <2oCaO <38SrO<56BaO。原因是 ,元素的金属性逐渐增强,金属氧化物对NOX的吸收能力逐渐增强。
通过NOx传感器可监测NOx的含量,其工作原理示意图如下:
①Pt电极上发生的是 反应(填“氧化”或“还原”)。
②写出NiO电极的电极反应式: 。
【答案】(1)3NO2+2H2O=2HNO3+NO;
(2)①N2(g)+O2(g)=2NO(g) △H=+183KJ/mol; ②增大;
(3)①2NO+2CON2+2CO2
②由Mg、Ca、Sr、Ba的质子数,得知它们均为第ⅡA族。同一主族的元素,从上到下,原子半径逐渐增大;
(4)①还原; ②NO+O2--2e-=NO2;
【解析】(1)NO2与H2O反应生成HNO3与NO;
(2)①△H=945kJ/mol+498kJ/mol-2×630KJ/mol=+183KJ/mol;
②该反应正反应是吸热反应,升高温度,平衡向正反应移动,化学平衡常数增大;
(3)①NO被CO还原N2,CO被氧化为CO2;
②由Mg、Ca、Sr、Ba的质子数可知,它们均处于第ⅡA族,同一主族自上而下,原子半径增大,金属性增强;
(4)①由工作原理示意图可知,O2在Pt电极发生还原反应生成O2-;
②在O2-参加反应下,NO在NiO电极发生氧化反应生成NO2。
(2013山东卷)28.(12分)金属冶炼和处理常涉及氧化还原反应。
(1)由下列物质冶炼相应金属时采用电解法的是 。
a.Fe2O3 b.NaCl c.Cu2S d.Al2O3
(2)辉铜矿(Cu2S)可发生反应2Cu2S+2H2SO4+5O2=4CuSO4+2 H2O,该反应的还原剂是 ,当1mol O2发生反应时,还原剂所失电子的物质的量为 mol。向CuSO4溶液中加入镁条时有气体生成,该气体是 。
(3)右图为电解精炼银的示意图, (填a或b)极为含有杂质的粗银,若b极有少量红棕色气体生成,则生成该气体的电极反应式为 。(4)为处理银器表面的黑斑(Ag2S),将银器置于铝制容器里的食盐水中并与铝接触,Ag2S转化为Ag,食盐水的作用为 。
解析:(1)NaCl与Al2O3冶炼需要用电解法,Fe2O3与Cu2S可以用热还原法,所以答案为b、d。
(2)在该反应中,Cu元素化合价由+1升高到+2,S元素化合价由-2升高到+6,Cu2S做还原剂;当有1molO2参与反应转移的电子为4mol,由于Cu2+水解呈酸性,加入镁条时,镁与H+反应生成了氢气。
(3)电解精炼时,不纯金属做阳极,这里就是a极;b电极是阴极,发生还原反应,生成了红棕色气体是NO,遇空气氧化生成的NO2,电极反应:NO3-+3e-+4H+=NO↑+2H2O。或NO3-+e-+2H+=NO2↑+H2O
(4)做电解质溶液,形成原电池。
答案:(1)b、d
(2)Cu2S;4;氢气
(3)a;NO3-+e-+2H+=NO2↑+H2O
(4)做电解质溶液(或导电)
直流电源
Pt
电极
Ag-Pt
电极
H2O
NO3— N2
质子交换膜
题11图
A
B
[2013高考∙重庆卷∙11](14分)化学在环境保护中趁着十分重要的作用,催化反硝化法和电化学降解法可用于治理水中硝酸盐的污染。
(1) 催化反硝化法中,H2能将NO3—还原为N2,
25℃时,反应进行10min,溶液的pH由7变为12。
①N2的结构式为 。
②上述反应离子方程式为 ,
其平均反应速率v(NO3—)为 mol ∙L—1 ∙min—1
③还原过程中可生成中间产物NO2—,写出3
种促进NO2—水解的方法 。
(2)电化学降解NO3—的原理如题11图所示。
①电源正极为 (填“A”或“B”),
阴极反应式为 。
②若电解过程中转移了2mol电子,则膜两侧
电解液的质量变化差(△m左-△m右)为 g。
答案:(1)①N≡N ②2NO3-+5H2N2+2OH-+4H2O 0.001 ③加酸,升高温度,加水
(2)①A, 2NO3-+6H2O+10e-=N2+12OH- ②14.4
【解析】(1)①N2分子中氮原子间通过氮氮三键结合,因此其结构式为N≡N;②利用溶液pH变化可知有OH-生成,再结合原子守恒可写出反应的离子方程式;利用离子方程式知v(NO3-)=v(OH-)=(10-2-10-7)/10=0.001mol/(L·min);③水解是吸热反应,NO2-水解使溶液中c(OH-)变大,因此可促进NO2-水解的措施有加热、加水或加酸等。(2)①由图示知在Ag-Pt电极上NO3-发生还原反应,因此Ag-Pt电极为阴极,则B为负极,A为电源正极;在阴极反应是NO3-得电子发生还原反应生成N2,利用电荷守恒与原子守恒知有H2O参与反应且有OH-生成;②转移2mol电子时,阳极(阳极反应为H2O失电子氧化为O2和H+)消耗1mol水,产生2molH+进入阴极室,阳极室质量减少18g;阴极室中放出0.2molN2(5.6g),同时有2molH+(2g)进入阴极室,因此阴极室质量减少3.6g,故膜两侧电解液的质量变化差(△m左-△m右)=18g-3.6g=14.4g。
(2013福建卷)23.(16分)
利用化石燃料开采、加工过程产生的H2S废气制取氢气,既廉价又环保。
(1)工业上可用组成为K2O·M2O3·2RO2·nH2O的无机材料纯化制取的氢气
①已知元素M、R均位于元素周期表中第3周期,两种元素原子的质量数之和为27,则R的原子结构示意图为_________
②常温下,不能与M单质发生反应的是_________(填序号)
a.CuSO4溶液 b.Fe2O3 c.浓硫酸 d.NaOH e.Na2CO3固体
(2)利用H2S废气制取氢气来的方法有多种
①高温热分解法
已知:H2S(g)==H2+1/2S2(g)
在恒温密闭容器中,控制不同温度进行H2S分解实验。以H2S起始浓度均为c mol·L-1测定H2S的转化率,结果见右图。图中a为H2S的平衡转化率与温度关系曲线,b曲线表示不同温度下反应经过相同时间且未达到化学平衡时H2S的转化率。据图计算985℃时H2S按上述反应分解的平衡常数K=________;说明温度的升高,曲线b向曲线a逼近的原因:___________
②电化学法
该法制氢过程的示意图如右。反应池中反应物的流向采用气、液逆流方式,其目的是___________;反应池中发生反应的化学方程式为_____________________。反应后的溶液进入电解池,电解总反应的离子方程式为_______________________。
【答案】(1)① ②b、e
(2)① 温度升高,反应速率加快,达到平衡所需的进间缩短(或其它合理答案)
②增大反应物接触面积,使反应更反分
H2S + 2FeCl3 = 2FeCl2 + S↓ + 2HCl 2Fe2+ + 2H+ 2Fe3+ + H2↑
【解析】本题考查元素推断、原子结构、化学平衡的影响因素及计算、电化学等化学反应原理的知识,同时考查学生的图表分析能力。
(1)R为+4价,位于第3周期,应为Si元素,同理M为Al元素。常温下铝与Fe2O3不反应,与Na2CO3也不反应;(2)①K===。温度越高,反应速率越快,反应物的转化率越高,与平衡转化率差距越小,所以离得近。②FeCl3具有强氧化性,能够氧化H2S:2FeCl3+H2S=2FeCl2+S+2HCl。该逆流原理与浓硫酸中SO3的吸收相类似,气体从下端通入,液体从上端喷,可以增大气液接触面积,反应充分。从图可知电解过程中从左池通入的Fe2+生成Fe3+(阳极反应),循环使用;而另一电极产生的则为H2(阴极反应)。故电解总的离子方程式为:2Fe2++2H+2Fe3++H2↑。