• 2.24 MB
  • 2021-05-14 发布

2015高考数学分类汇编数列

  • 24页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
专题六 数列 ‎1.【2015高考重庆,理2】在等差数列中,若=4,=2,则=    (  )‎ A、-1 B、0 C、1 D、6‎ ‎【答案】B ‎【解析】由等差数列的性质得,选B.‎ ‎【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.‎ ‎【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题.‎ ‎2.【2015高考福建,理8】若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( )‎ A.6 B.‎7 C.8 D.9‎ ‎【答案】D ‎【解析】由韦达定理得,,则,当适当排序后成等比数列时,必为等比中项,故,.当适当排序后成等差数列时,必不是等差中项,当是等差中项时,,解得,;当是等差中项时,,解得,,综上所述,,所以,选D.‎ ‎【考点定位】等差中项和等比中项.‎ ‎【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.‎ ‎3.【2015高考北京,理6】设是等差数列. 下列结论中正确的是( )‎ A.若,则 B.若,则 C.若,则 D.若,则 ‎【答案】C ‎【解析】先分析四个答案支,A举一反例,而,A错误,B举同样反例,,而,B错误,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,选C.‎ 考点定位:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查.‎ ‎【名师点睛】本题考查等差数列的通项公式和比较法,本题属于基础题,由于前两个选项无法使用公式直接做出判断,因此学生可以利用举反例的方法进行排除,这需要学生不能死套公式,要灵活应对,作差法是比较大小常规方法,对判断第三个选择只很有效.‎ ‎4.【2015高考浙江,理3】已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( )‎ A. ‎ B. C. D. ‎ ‎【答案】B.‎ ‎【名师点睛】本题主要考查了等差数列的通项公式,等比数列的概念等知识点,同时考查了学生的运算求 解能力,属于容易题,将,表示为只与公差有关的表达式,即可求解,在解题过程中要注意等等差数列与等比数列概念以及相关公式的灵活运用.‎ ‎5.【2015高考安徽,理14】已知数列是递增的等比数列,,则数列的前项和等于 .‎ ‎【答案】‎ ‎【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和 ‎ .‎ ‎【考点定位】1.等比数列的性质;2.等比数列的前项和公式.‎ ‎【名师点睛】对于等差数列与等比数列综合考查的问题,要做到:①熟练掌握等差或等比数列的性质,尤其是,则(等差数列),(等比数列);②注意题目给定的限制条件,如本题中“递增”,说明;③要熟练掌握数列中相关的通项公式,前项和公式等.‎ ‎6.【2015高考新课标2,理16】设是数列的前n项和,且,,则________.‎ ‎【答案】‎ ‎【解析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以.‎ ‎【考点定位】等差数列和递推关系.‎ ‎【名师点睛】本题考查数列递推式和等差数列通项公式,要搞清楚项与的关系,从而转化为与的递推式,并根据等差数列的定义判断是等差数列,属于中档题.‎ ‎7.【2015高考广东,理10】在等差数列中,若,则= .‎ ‎【答案】.‎ ‎【解析】因为是等差数列,所以,即,所以,故应填入.‎ ‎【考点定位】等差数列的性质.‎ ‎【名师点睛】本题主要考查等差数列性质及其简单运算和运算求解能力,属于容易题,解答此题关键在于熟记,及其熟练运用.‎ ‎8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .‎ ‎【答案】‎ ‎【解析】设数列的首项为,则,所以,故该数列的首项为,所以答案应填:.‎ ‎【考点定位】等差中项.‎ ‎【名师点晴】本题主要考查的是等差中项,属于容易题.解题时一定要抓住重要字眼“中位数”和“等差数列”,否则很容易出现错误.解本题需要掌握的知识点是等差中项的概念,即若,,成等差数列,则称为与的等差中项,即.‎ ‎9.【2015江苏高考,11】数列满足,且(),则数列的前10项和为 ‎ ‎【答案】‎ ‎【考点定位】数列通项,裂项求和 ‎【名师点晴】由数列的递推公式求通项公式时,若递推关系为an+1=an+f(n)或an+1=f(n)·an,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,注意:有的问题也可利用构造法,即通过对递推式的等价变形,转化为特殊数列求通项.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.‎ ‎10.【2015江苏高考,20】(本小题满分16分)‎ ‎ 设是各项为正数且公差为d的等差数列 ‎ (1)证明:依次成等比数列;‎ ‎ (2)是否存在,使得依次成等比数列,并说明理由;‎ ‎ (3)是否存在及正整数,使得依次成等比数列,并说 ‎ 明理由.‎ ‎【答案】(1)详见解析(2)不存在(3)不存在 ‎【解析】‎ 试题分析(1)根据等比数列定义只需验证每一项与前一项的比值都为同一个不为零的常数即可(2)本题列式简单,变形较难,首先令将二元问题转化为一元,再分别求解两个高次方程,利用消最高次的方法得到方程:,无解,所以不存在(3)同(2)先令将二元问题转化为一元,为降次,所以两边取对数,消去n,k得到关于t的一元方程,从而将方程的解转化为研究函数零点情况,这个函数需要利用二次求导才可确定其在上无零点 试题解析:(1)证明:因为(,,)是同一个常数,‎ 所以,,,依次构成等比数列.‎ ‎(2)令,则,,,分别为,,,(,,).‎ 假设存在,,使得,,,依次构成等比数列,‎ 则,且.‎ 令,则,且(,),‎ 化简得(),且.将代入()式,‎ ‎,则.‎ 显然不是上面方程得解,矛盾,所以假设不成立,‎ 因此不存在,,使得,,,依次构成等比数列.‎ ‎(3)假设存在,及正整数,,使得,,,依次构成等比数列,‎ 则,且.‎ 分别在两个等式的两边同除以及,并令(,),‎ 则,且.‎ 将上述两个等式两边取对数,得,‎ 且.‎ 化简得,‎ 且.‎ 令,则.‎ 由,,‎ 知,,,在和上均单调.‎ 故只有唯一零点,即方程()只有唯一解,故假设不成立.‎ 所以不存在,及正整数,,使得,,,依次构成等比数列.‎ ‎【考点定位】等差、等比数列的定义及性质,函数与方程 ‎【名师点晴】解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解.‎ ‎11.【2015高考浙江,理20】已知数列满足=且=-()‎ ‎(1)证明:1();‎ ‎(2)设数列的前项和为,证明().‎ ‎【答案】(1)详见解析;(2)详见解析.‎ 试题分析:(1)首先根据递推公式可得,再由递推公式变形可知 ‎,从而得证;(2)由和得,‎ ‎,从而可得,即可得证.‎ 试题解析:(1)由题意得,,即,,由 得,由得,‎ ‎,即;(2)由题意得,‎ ‎∴①,由和得,,‎ ‎∴,因此②,由①②得 ‎.‎ ‎【考点定位】数列与不等式结合综合题.‎ ‎【名师点睛】本题主要考查了数列的递推公式,不等式的证明等知识点,属于较难题,第一小问易证,利 用条件中的递推公式作等价变形,即可得到,再结合已知条件即可得证,第二小 问具有较强的技巧性,首先根据递推公式将转化为只与有关的表达式,再结合已知条件得到的 取值范围即可得证,此次数列自2008年之后作为解答题压轴题重出江湖,算是一个不大不小的冷门(之 前浙江各地的模考解答题压轴题基本都是以二次函数为背景的函数综合题),由于数列综合题常与不等式,‎ 函数的最值,归纳猜想,分类讨论等数学思想相结合,技巧性比较强,需要平时一定量的训练与积累,在 后续复习时应予以关注.‎ ‎12.【2015高考山东,理18】设数列的前n项和为.已知.‎ ‎ (I)求的通项公式;‎ ‎ (II)若数列满足,求的前n项和.‎ ‎【答案】(I); (II).‎ 所以 ‎ 当 时,‎ ‎ ‎ 所以 两式相减,得 ‎ ‎ ‎ ‎ 所以 经检验, 时也适合,‎ 综上可得: ‎ ‎【考点定位】1、数列前 项和 与通项 的关系;2、特殊数列的求和问题.‎ ‎【名师点睛】本题考查了数列的基本概念与运算,意在考查学生的逻辑思维能力与运算求解能力,思维的严密性和运算的准确性,在利用与通项的关系求的过程中,一定要注意 的情况,错位相减不法虽然思路成熟但也对学生的运算能力提出了较高的要求.‎ ‎13. 【2015高考安徽,理18】设,是曲线在点处的切线与x轴交点的横坐标.‎ ‎ (Ⅰ)求数列的通项公式;‎ ‎ (Ⅱ)记,证明.‎ ‎【答案】(Ⅰ);(Ⅱ).‎ ‎【解析】‎ 试题分析:(Ⅰ)对题中所给曲线的解析式进行求导,得出曲线在点处的切线斜率为.从而可以写出切线方程为.令.解得切线与轴交点的横坐标.‎ ‎ (Ⅱ)要证,需考虑通项,通过适当放缩能够使得每项相消即可证明.思路如下:先表示出,求出初始条件当时,.当时,单独考虑,并放缩得,所以 ‎ ,综上可得对任意的,均有.‎ 试题解析:(Ⅰ)解:,曲线在点处的切线斜率为.‎ ‎ 从而切线方程为.令,解得切线与轴交点的横坐标.‎ ‎ (Ⅱ)证:由题设和(Ⅰ)中的计算结果知 ‎ .‎ ‎ 当时,.‎ ‎ 当时,因为,‎ ‎ 所以.‎ ‎ 综上可得对任意的,均有.‎ ‎【考点定位】1.曲线的切线方程;2.数列的通项公式;3.放缩法证明不等式.‎ ‎【名师点睛】数列是特殊的函数,不等式是深刻认识函数与数列的重要工具,三者的综合是近几年高考命题的新热点,且数列的重心已经偏移到不等式的证明与求解中,而不再是以前的递推求通项,此类问题在2010年、2012年、2013年安徽高考解答题中都曾考过.对于数列问题中求和类(或求积类)不等式证明,如果是通过放缩的方法进行证明的,一般有两种类型:一种是能够直接求和(或求积),再放缩;一种是不能直接求和(或求积),需要放缩后才能求和(或求积),求和(或求积)后再进行放缩.在后一种类型中,一定要注意放缩的尺度,二是要注意从哪一项开始放缩.‎ ‎14.【2015高考天津,理18】(本小题满分13分)已知数列满足,且 成等差数列.‎ ‎(I)求的值和的通项公式;‎ ‎(II)设,求数列的前项和.‎ ‎【答案】(I) ; (II) .‎ ‎ ‎ ‎(II) 由(I)得,设数列的前项和为,则 ‎,‎ 两式相减得 ‎,‎ 整理得 ‎ 所以数列的前项和为.‎ ‎【考点定位】等差数列定义、等比数列及前项和公式、错位相减法求和.‎ ‎【名师点睛】本题主要考查等差、等比数列定义与性质,求和公式以及错位相减法求和的问题,通过等差数列定义、等比数列性质,分为奇偶数讨论求通项公式,并用错位相减法基本思想求和.是中档题.‎ ‎15.【2015高考重庆,理22】在数列中,‎ ‎(1)若求数列的通项公式;‎ ‎ (2)若证明:‎ ‎【答案】(1);(2)证明见解析.‎ ‎【解析】‎ 试题分析:(1)由于,因此把已知等式具体化得,显然由于,则(否则会得出),从而,所以是等比数列,由其通项公式可得结论;(2)本小题是数列与不等式的综合性问题,数列的递推关系是可变形为,‎ 由于,因此,于是可得,即有,又,于是有 ‎,这里应用了累加求和的思想方法,由这个结论可知,因此 ‎,这样结论得证,本题不等式的证明应用了放缩法.(1)由,有 若存在某个,使得,则由上述递推公式易得,重复上述过程可得,此与矛盾,所以对任意,.‎ 从而,即是一个公比的等比数列.‎ 故.‎ 求和得 另一方面,由上已证的不等式知得 综上:‎ ‎【考点定位】等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.,考查探究能力和推理论证能力,考查创新意识.‎ ‎【名师点晴】数列是考查考生创新意识与实践精神的最好素材.从近些 年的高考试题来看,一些构思精巧、新颖别致、极富思考性和挑战性的数列与方程、函数(包括三角函数)、不等式以及导数等的综合性试题不断涌现,这部分试题往往以压轴题的形式出现,考查综合运用知识的能力,突出知识的融会贯通.数列的问题难度大,往往表现在与递推数列有关,递推含义趋广,不仅有数列前后项的递推,更有关联数列的递推,更甚的是数列间的“复制”式递推;从递推形式上看,既有常规的线性递推,还有分式、三角、分段、积(幂)等形式.在考查通性通法的同时,突出考查思维能力、代数推理能力、分析问题解决问题的能力.‎ 本题第(1)小题通过递推式证明数列是等比数列,从而应用等比数列的通项公式求得通项,第(2)小题把数列与不等式结合起来,利用数列的递推式证明数列是单调数列,利用放缩法证明不等式,难度很大.‎ ‎16.【2015高考四川,理16】设数列的前项和,且成等差数列.‎ ‎ (1)求数列的通项公式;‎ ‎ (2)记数列的前n项和,求得成立的n的最小值.‎ ‎【答案】(1);(2)10.‎ ‎【解析】(1)由已知,有,‎ 即.‎ 从而.‎ 又因为成等差数列,即.‎ 所以,解得.‎ 所以,数列是首项为2,公比为2的等比数列.‎ 故.‎ ‎(2)由(1)得.‎ 所以.‎ 由,得,即.‎ 因为,‎ 所以.‎ 于是,使成立的n的最小值为10.‎ ‎【考点定位】本题考查等差数列与等比数列的概念、等比数列通项公式与前n项和公式等基础知识,考查运算求解能力.‎ ‎【名师点睛】凡是有与间的关系,都是考虑消去或(多数时候是消去,得与间的递推关系).在本题中,得到与间的递推关系式后,便知道这是一个等比数列,利用等比数列的相关公式即可求解.等差数列与等比数列是高考中的必考内容,多属容易题,考生应立足得满分.‎ ‎17.【2015高考湖北,理18】设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.‎ ‎(Ⅰ)求数列,的通项公式;‎ ‎(Ⅱ)当时,记,求数列的前项和. ‎ ‎【答案】(Ⅰ)或;(Ⅱ).‎ ‎. ②‎ ‎①-②可得,‎ 故. ‎ ‎【考点定位】等差数列、等比数列通项公式,错位相减法求数列的前项和.‎ ‎【名师点睛】错位相减法适合于一个由等差数列及一个等比数列对应项之积组成的数列.考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等.两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的项是一个等比数列.‎ ‎18.【2015高考陕西,理21】(本小题满分12分)设是等比数列,,,,‎ 的各项和,其中,,.‎ ‎(I)证明:函数在内有且仅有一个零点(记为),且;‎ ‎(II)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较 与的大小,并加以证明.‎ ‎【答案】(I)证明见解析;(II)当时, ,当时,,证明见解析.‎ ‎【解析】‎ 试题分析:(I)先利用零点定理可证在内至少存在一个零点,再利用函数的单调性可证在内有且仅有一个零点,进而利用是的零点可证;(II)先设,再对的取值范围进行讨论来判断与的大小,进而可得和的大小.‎ 试题解析:(I),则 所以在内至少存在一个零点.‎ 又,故在内单调递增,‎ 所以在内有且仅有一个零点.‎ 因为是的零点,所以,即,故.‎ ‎(II)解法一:由题设,‎ 所以,即.‎ 综上所述,当时, ;当时 解法二 由题设,‎ 当时, ‎ 当时, 用数学归纳法可以证明.‎ 当时, 所以成立.‎ 假设时,不等式成立,即.‎ 那么,当时,‎ ‎.‎ 又 令,则 所以当,,在上递减;‎ 当,,在上递增.‎ 所以,从而 故.即,不等式也成立.‎ 所以,对于一切的整数,都有.‎ 解法三:由已知,记等差数列为,等比数列为,则,,‎ 所以,‎ 令 当时, ,所以.‎ 当时, ‎ 而,所以,.‎ 若,,,‎ 当,,,‎ 从而在上递减,在上递增.所以,‎ 所以当又,,故 综上所述,当时,;当时.‎ 考点:1、等比数列的前项和公式;2、零点定理;3、等差数列的前项和公式;4、利用导数研究函数的单调性.‎ ‎【名师点晴】本题主要考查的是等比数列的前项和公式、零点定理、等差数列的前 项和公式和利用导数研究函数的单调性,属于难题.解题时一定要抓住重要字眼“有且仅有一个”,否则很容易出现错误.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.有关函数的不等式,一般是先构造新函数,再求出新函数在定义域范围内的值域即可.‎ ‎19.【2015高考新课标1,理17】为数列{}的前项和.已知>0,=.‎ ‎(Ⅰ)求{}的通项公式;‎ ‎(Ⅱ)设 ,求数列{}的前项和.‎ ‎【答案】(Ⅰ)(Ⅱ)‎ 所以=;‎ ‎(Ⅱ)由(Ⅰ)知,=,‎ 所以数列{}前n项和为= =.‎ ‎【考点定位】数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法 ‎【名师点睛】已知数列前n项和与第n项关系,求数列通项公式,常用将所给条件化为关于前n项和的递推关系或是关于第n项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.‎ ‎20.【2015高考广东,理21】数列满足,‎ ‎ (1) 求的值;‎ ‎ (2) 求数列前项和;‎ ‎(3) 令,,证明:数列的前项和满足.‎ ‎【答案】(1);(2);(3)见解析.‎ ‎【解析】(1)依题,‎ ‎∴ ;‎ ‎(2)依题当时,,‎ ‎∴ ,又也适合此式,‎ ‎∴ ,‎ ‎∴ 数列是首项为,公比为的等比数列,故;‎ ‎(3)依题由知,,,‎ ‎【考点定位】前项和关系求项值及通项公式,等比数列前项和,不等式放缩.‎ ‎【名师点睛】本题主要考查前项和关系求项值及通项公式,等比数列前项和,不等式放缩等,转化与化归思想的应用和运算求解能力,属于高档题,此题(1)(2)问难度不大,但第(3)问难度较大,首先应能求得,并由得到,再用构造函数()结合不等()放缩方法或用数学归纳法证明.‎ ‎【2015高考上海,理22】已知数列与满足,.‎ ‎(1)若,且,求数列的通项公式;‎ ‎(2)设的第项是最大项,即(),求证:数列的第项是最大项;‎ ‎(3)设,(),求的取值范围,使得有最大值与最小值,且.‎ ‎【答案】(1)(2)详见解析(3)‎ ‎【解析】解:(1)由,得,‎ 所以是首项为,公差为的等差数列,‎ 故的通项公式为,.‎ 证明:(2)由,得.‎ 所以为常数列,,即.‎ 因为,,所以,即.‎ 故的第项是最大项.‎ 解:(3)因为,所以,‎ 当时,‎ ‎ ‎ ‎ .‎ 当时,,符合上式.‎ 所以.‎ 因为,所以,.‎ ①当时,由指数函数的单调性知,不存在最大、最小值;‎ ②当时,的最大值为,最小值为,而;‎ ③当时,由指数函数的单调性知,的最大值,最小值,由及,得.‎ 综上,的取值范围是.‎ ‎【考点定位】等差数列,数列单调性 ‎【名师点睛】1.等差数列的四种判断方法 ‎(1)定义法:an+1-an=d(d是常数)⇔{an}是等差数列.‎ ‎(2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列.‎ ‎(3)通项公式:an=pn+q(p,q为常数)⇔{an}是等差数列.‎ ‎(4)前n项和公式:Sn=An2+Bn(A、B为常数)⇔{an}是等差数列.‎ ‎2.数列作为特殊的函数,其单调性的判断与研究也是特别的,只需研究相邻两项之间关系即可.‎