• 93.00 KB
  • 2021-05-14 发布

新课标备战高考数学知识总结专题10不等式

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎10. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:‎ (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式.‎ (3) 同向不等式与异向不等式.‎ (4) 同解不等式与不等式的同解变形.‎ ‎2.不等式的基本性质 ‎(1)(对称性)‎ ‎(2)(传递性)‎ ‎(3)(加法单调性)‎ ‎(4)(同向不等式相加)‎ ‎(5)(异向不等式相减)‎ ‎(6)‎ ‎(7)(乘法单调性)‎ ‎(8)(同向不等式相乘)‎ ‎(异向不等式相除)‎ ‎(倒数关系)‎ ‎(11)(平方法则)‎ ‎(12)(开方法则)‎ ‎3.几个重要不等式 ‎(1)‎ ‎(2)(当仅当a=b时取等号)‎ ‎(3)如果a,b都是正数,那么 (当仅当a=b时取等号)‎ 极值定理:若则:‎ 如果P是定值, 那么当x=y时,S的值最小; ‎ 如果S是定值, 那么当x=y时,P的值最大.‎ ‎ 利用极值定理求最值的必要条件: 一正、二定、三相等. ‎ ‎(当仅当a=b=c时取等号)‎ ‎(当仅当a=b时取等号)‎ ‎(7)‎ ‎4.几个著名不等式 ‎ (1)平均不等式: 如果a,b都是正数,那么 (当仅当a=b时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):‎ 特别地,(当a = b时,)‎ 幂平均不等式:‎ 注:例如:.‎ 常用不等式的放缩法:①‎ ‎②‎ ‎(2)柯西不等式: ‎ ‎(3)琴生不等式(特例)与凸函数、凹函数 若定义在某区间上的函数f(x),对于定义域中任意两点有 则称f(x)为凸(或凹)函数.‎ ‎5.不等式证明的几种常用方法 ‎ 比较法、综合法、分析法、换元法、反证法、放缩法、构造法.‎ ‎6.不等式的解法 ‎(1)整式不等式的解法(根轴法).‎ ‎ 步骤:正化,求根,标轴,穿线(偶重根打结),定解.‎ 特例① 一元一次不等式ax>b解的讨论;‎ ‎②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.‎ ‎(2)分式不等式的解法:先移项通分标准化,则 ‎(3)无理不等式:转化为有理不等式求解 ‎ ‎ ‎(4).指数不等式:转化为代数不等式 ‎(5)对数不等式:转化为代数不等式 ‎(6)含绝对值不等式 应用分类讨论思想去绝对值; 应用数形思想;‎ 应用化归思想等价转化 注:常用不等式的解法举例(x为正数):‎ ‎① ‎ ‎②‎ 类似于,③‎