- 309.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
从高考考余弦定理证明谈起
【题1】 叙述并证明勾股定理(1979年全国卷,四题).
【说明】 这道大题,在总分为110分的考卷上,理科占6分,文科占9分.理科的评分标准是:(1)叙述勾股定理(2分);(2)证明勾股定理(4分).
【题2】 (1980·理科四题(满分8分))写出余弦定理(只写一个公式即可),并加以证明
【插话】 对这道题目,人们虽然不感到新鲜,但有一个期待,期待着标准答案中有“新鲜东西”出现.后来一看,非常“失望”,该题对余弦定理的证明,依赖的仍然是勾股定理.
【题3】(2010年四川)
(文)(19)(本小题满分12分)w_w w. k#s5_u.c o(Ⅰ)1证明两角和的余弦公式;
2由推导两角和的正弦公式.
(Ⅱ)已知,求
解:(1)①如图,在执教坐标系xOy内做单位圆O,并作出角α、β与-β,使角α的始边为Ox,交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.
则P1(1,0),P2(cosα,sinα)
P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β))
由P1P3=P2P4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ.…②由①易得cos(-α)=sinα,sin(-α)=cosα
sin(α+β)=cos[-(α+β)]=cos[(-α)+(-β)]
=cos(-α)cos(-β)-sin(-α)sin(-β)
=sinαcosβ+cosαsinβ……………………………………6分
(2)∵α∈(π,),cosα=-
∴sinα=-
∵β∈(,π),tanβ=-
∴cosβ=-,sinβ=
cos(α+β)=cosαcosβ-sinαsinβ
=(-)×(-)-(-)×w_w w. k#s5_u.c o*
=
(理)(19)(本小题满分12分)
(Ⅰ)1证明两角和的余弦公式;
2由推导两角和的正弦公式.
(Ⅱ)已知△ABC的面积,且,求cosC.
解:(1)①如图,在执教坐标系xOy内做单位圆O,并作出角α、β与-β,使角α的始边为Ox,交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.
则P1(1,0),P2(cosα,sinα)P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)) w_w w. k#s5_
u.c o*m由P1P3=P2P4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ.……………………4分
②由①易得cos(-α)=sinα,sin(-α)=cosα
sin(α+β)=cos[-(α+β)]=cos[(-α)+(-β)]
=cos(-α)cos(-β)-sin(-α)sin(-β)
=sinαcosβ+cosαsinβ……………………………………6分
(2)由题意,设△ABC的角B、C的对边分别为b、c
则S=bcsinA=
=bccosA=3>0w_w w. k#s5_u.c o*m
∴A∈(0, ),cosA=3sinA
又sin2A+cos2A=1,∴sinA=,cosA=
由题意,cosB=,得sinB=
∴cos(A+B)=cosAcosB-sinAsinB=w_w w. k#s5_u.c o*m
故cosC=cos[π-(A+B)]=-cos(A+B)=-…………………………12分
【题4】(2011年陕西)
相关文档
- 2020-2021年高考生物一轮复习知识2021-05-144页
- 高考家长最容易陷入的十大志愿填报2021-05-146页
- 全国高考 物理 试题及参考答案全集2021-05-14129页
- 南昌市2014高考英语完形填空训练102021-05-148页
- (新课标版)2020版高考历史一轮复习 2021-05-1413页
- 辽宁高考理综卷答案辽宁卷2021-05-1413页
- 高考物理二轮练习资料专题曲线运动2021-05-1434页
- 2014年版高考英语完形填空二轮突破2021-05-1414页
- 通用版高考地理复习资料工业与区位2021-05-1414页
- 高考英语一轮复习话题阅读素材202021-05-143页