• 2.69 MB
  • 2021-05-14 发布

高考数学二轮复习教学案专题02函数与导数教师版

  • 51页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎【2013考纲解读】‎ ‎ 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.‎ ‎2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.‎ ‎3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.‎ ‎4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.‎ ‎7.了解幂函数的概念;结合函数的图象,了解它们的变化情况.‎ ‎8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.‎ ‎9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.‎ ‎10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.‎ ‎11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.‎ ‎12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题。‎ ‎【知识络构建】‎ ‎【重点知识整合】‎ 一、函数、基本初等函数的图象与性质 ‎ ‎1.函数的性质 ‎(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;‎ ‎(2)奇偶性:偶函数其图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.特别注意定义域含0的奇函数f(0)=0;‎ ‎(3)周期性:f(x+T)=f(x)(T≠0),则称f(x)为周期函数,T是它的一个周期.‎ ‎2.对称性与周期性的关系 ‎(1)若函数f(x)的图象有两条对称轴x=a,x=b(a≠b),则函数f(x)是周期函数,2|b-a|是它的一个正周期,特别地若偶函数f(x)的图象关于直线x=a(a≠0)对称,则函数f(x)是周期函数,2|a|是它的一个正周期;‎ ‎3.函数的图象 ‎(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;‎ ‎(2)函数的图象变换主要是平移变换、伸缩变换和对称变换.‎ ‎4.指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)‎ 指数函数y=ax(a>0,a≠1)的图象和性质,分01两种情况;对数函数y=logax(a>0,a≠1)的图象和性质,分01两种情况;幂函数y=xα的图象和性质,分幂指数α>0,α=0,α<0三种情况.‎ 二、函数与方程、函数的应用 ‎1.函数的零点 方程的根与函数的零点的关系:由函数的零点的定义可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.‎ ‎2.二分法 用二分法求函数零点的一般步骤:‎ 第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;‎ 第二步:求区间[a,b]的中点c;‎ 第三步:计算f(c):‎ ‎(1)若f(c)=0,则c就是函数的零点;‎ ‎(2)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));‎ ‎(3)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b));‎ ‎(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).‎ ‎3.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转译成实际问题作出解答.‎ 三、导数在研究函数性质中的应用及定积分 ‎ ‎1.导数的几何意义 ‎4.闭区间上函数的最值 在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者.‎ ‎5.定积分与曲边形面积 ‎(1)曲边为y=f(x)的曲边梯形的面积:在区间[a,b]上的连续的曲线y=f(x),和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=.当f(x)≥0时,S=f(x)dx;当f(x)<0时,S=-f(x)dx.‎ ‎(2)曲边为y=f(x),y=g(x)的曲边形的面积:在区间[a,b]上连续的曲线y=f(x),y=g(x),和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=|f(x)-g(x)|dx.当f(x)≥g(x)时,S=[f(x)-g(x)]dx;当f(x)0,‎ 解得x<-1或x>2.‎ 令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.‎ 故函数f(x)= 当x<-1或x>2时,函数f(x)>f(-1)=2;‎ 当-1≤x≤2时,函数f()≤f(x)≤f(-1),‎ 即-≤f(x)≤0.‎ 故函数f(x)的值域是[-,0]∪(2,+∞).‎ 答案:D 考点二、函数的图像 作函数图像有两种基本方法:一是描点法;二是图像变换法,其中图像变换有平移变换、伸缩变换、对称变换. ‎ 例2、函数y=-2sinx的图像大致是 (  )‎ ‎【变式探究】函数y=xln(-x)与y=xlnx的图像关于 (  ) ‎ A.直线y=x对称 B.x轴对称 ‎ C.y轴对称 D.原点对称 ‎ 考点三、函数的性质 ‎1.单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性.判定函数的单调性常用定义法、图像法及导数法.对于选择题和填空题,也可用一些命题,如两个增(减)函数的和函数仍为增(减)函数等. ‎ ‎2.函数的奇偶性反映了函数图像的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径. ‎ 例3、对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是 (  )‎ A.4和6 B.3和1‎ C.2和4 D.1和2‎ 考点四 二次函数的图像与性质:‎ ‎(1)二次函数y=ax2+bx+c(a≠0)的图像是抛物线 ‎①过定点(0,c);‎ ‎②对称轴为x=-,顶点坐标为(-,).‎ ‎(2)当a>0时,图像开口向上,在(-∞,-]上单调递减,在[-,+∞)上单调递增,‎ 有最小值;‎ 当a<0时,图像开口向下,在(-∞,-]上单调递增,[-,+∞)上单调递减,有最大值.‎ 例 4、已知函数f(x)=x2+2ax+2,x∈[-5,5].‎ ‎(1)当a=-1时,求函数f(x)的最大值和最小值;‎ ‎(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.‎ 解:(1)当a=-1时, ‎ f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5], ‎ ‎∴x=1时,f(x)取得最小值1; ‎ x=-5时,f(x)取得最大值37. ‎ ‎(2)函数f(x)=(x+a)2+2-a2的图像的对称轴为直线x=-a, ‎ ‎∵y=f(x)在区间[-5,5]上是单调函数, ‎ ‎∴-a≤-5或-a≥5. ‎ 故a的取值范围是(-∞,-5]∪[5,+∞). ‎ ‎【变式探究】设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),则f(x1+x2)= (  )‎ A.- B.- C.c D. ‎ 【方法技巧】求二次函数在某段区间上的最值时,要利用好数形结合,特别是含参数的两种类型:“定轴动区间,定区间动轴”的问题,抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指的是对称轴.‎ 考点五 指数函数、对数函数及幂函数 指数函数与对数函数的性质: ‎ 指数函数y=ax(a>0且a≠1) ‎ 对数函数y=logax(a>0且a≠1) ‎ 定义域 ‎ ‎(-∞,+∞) ‎ ‎(0,+∞) ‎ 值域 ‎ ‎(0,+∞) ‎ ‎(-∞,+∞) ‎ 不变性 ‎ 恒过定点(0,1) ‎ 恒过定点(1,0) ‎ ‎1.对于两个数都为指数或对数的大小比较:如果底数相同, 直接应用指数函数或对数函数的单调性比较;如果底数与指数(或真数)皆不同,则要增加一个变量进行过渡比较,或利用换底公式统一底数进行比较. ‎ ‎2.对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论,解决对数问题时,首先要考虑定义域,其次再利用性质求解. ‎ 例5、已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图像与函数y=|lgx|的图像的交点共有 (  ) ‎ A.10个 B.9个 ‎ C.8个 D.1个 ‎ 解析:画出两个函数图像可看出交点有10个. ‎ 答案:A 考点六 函数的零点 ‎1.函数的零点与方程根的关系: ‎ 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标. ‎ ‎2.零点存在性定理: ‎ 如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根. ‎ 例6、 函数f(x)=-cosx在[0,+∞)内 (  )‎ A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点 ‎【变式探究】在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为 (  )‎ A.(-,0) B.(0,)‎ C.(,) D.(,)‎ 解析:因为f()=e+4×-3=e-2<0,f()=e+4×-3=e-1>0,所以f(x)=ex+4x-3的零点所在的区间为(,).‎ 答案:C ‎【方法技巧】函数零点(即方程的根)的确定问题,常见的有①数值的确定;②所在区间的确定;③个数的确定.解决这类问题的常用方法有解方程、根据区间端点函数值的符号数形结合,尤其是那些方程两边对应的函数类型不同的方程多以数形结合求解.‎ 考点七 函数的应用 例7、如图,长方体物体 E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v ‎>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:‎ ‎(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为;‎ ‎(2)其他面的淋雨量之和,其值为.记y为E移动过程中的总淋雨量.当移动距离d=100,面积S=时,‎ ‎(1)写出y的表达式;‎ ‎(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.‎ ‎①当0<c≤时,y是关于v的减函数.‎ 故当v=10时,ymin=20-.‎ ‎②当<c≤5时,在(0,c]上,y是关于v的减函数;在(c,10]上,y是关于v的增函数,故当v=c时,ymin=.‎ ‎【变式探究】某货轮匀速行驶在相距300海里的甲、‎ ‎ 乙两地间运输货物,运输成本由燃料费用和其他费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时. ‎ ‎(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数; ‎ ‎(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶? ‎ 故当货轮航行速度为‎40海里/小时时,能使该货轮运输成本最少.‎ 法二:由(1)y=150(00,f(x)单调递增;‎ ‎∴x=40时,f(x)取最小值80,‎ ymin=12 000.‎ 故当货轮航行速度为‎40海里/小时时,能使该货轮运输成本最少.‎ ‎【方法技巧】应用函数知识解应用题的步骤 ‎ ‎(1)正确地将实际问题转化为函数模型,这是解应用题的关键,转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的函数模型相比较,以确定函数模型的种类. ‎ ‎(2)用相关的函数知识,进行合理设计,确定最佳解题方案, 进行数学上的计算求解. ‎ ‎(3)把计算获得的结果带回到实际问题中去解释实际问题,即对实际问题进行总结作答. ‎ 考点八 利用导数求切线 导数的几何意义: ‎ ‎(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点 (x0,f(x0))处的切线的斜率,即k=f′(x0). ‎ ‎(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f′(x0)(x-x0). ‎ ‎(3)导数的物理意义:s′(t)=v(t),v′(t)=a(t). ‎ 例8、曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是 (  ) ‎ A.-9       B.-3 ‎ C.9 D.15 ‎ ‎【方法技巧】求曲线y=f(x)的切线方程的类型及方法 ‎ ‎(1)已知切点P(x0,y0),求切线方程:求出切线的斜率f′(x0),由点斜式写出方程; ‎ ‎(2)已知切线的斜率k,求切线方程: 设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程; ‎ ‎(3)已知切线上一点(非切点),求切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率.列方程(组)解得x0,再由点斜式或两点式写出方程. ‎ 考点九、利用导数研究函数的单调性 函数的单调性与导数的关系: 在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减. ‎ 例9、设a>0,讨论函数f(x)=lnx+a(1-a)x2-2(1-a)x的单调性.‎ 解:由题知a>0,x>0,‎ f ′(x)=,‎ 令g(x)=‎2a(1-a)x2-2(1-a)x+1,‎ ‎(1)当a=1时,g(x)=1>0,f ′(x)>0,‎ 故f(x)在(0,+∞)上单调递增;‎ ‎(2)当0<a<1时,g(x)的图像为开口方向向上的抛物线,‎ Δ=[-2(1-a)]2-‎8a(1-a)=4(1-a)(1-‎3a)‎ 若≤a<1,Δ≤0,g(x)≥0,f ′(x)≥0,仅当a=,x=时取等号,‎ ‎∴f(x)在(0,+∞)上单调递增;‎ 综上,当0<a<时,f(x)在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减;‎ 当≤a≤1时,f(x)在(0,+∞)上单调递增;‎ 当a>1时,f(x)在(0,x1)上单调递增,在(x1,+∞)上单调递减.‎ 其中x1=,x2=.‎ 考点10、利用函数单调性求极值 ‎1.若在x0附近左侧f′(x)>0,右侧f′(x)<0,则f(x0)为函数 f(x)的极大值;若在x0‎ 附近左侧f′(x)<0,右侧f′(x)>0,则f(x0)为函数f(x)的极小值. ‎ ‎2.设函数y=f(x)在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有最大值和最 小值且在极值点或端点处取得. ‎ 例10、设f(x)=-x3+x2+2ax.‎ ‎(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围;‎ ‎(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.‎ 解:(1)由f′(x)=-x2+x+‎2a=-(x-)2++‎2a,‎ 当x∈[,+∞)时,f′(x)的最大值为f′()=+‎2a;‎ 令+‎2a>0,得a>-.‎ 所以,当a>-时,f(x)在(,+∞)上存在单调递增区间.‎ ‎【方法技巧】‎ ‎1.利用导数研究函数的极值的一般步骤 ‎ ‎(1)确定定义域. ‎ ‎(2)求导数f′(x). ‎ ‎(3)①若求极值,则先求方程f′(x)=0的根,再检验f′(x)在方程根左、右值的符号,‎ 求出极值.(当根中有参数时要注意分类讨论根是否在定义域内) ‎ ‎②若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况,从 而求解. ‎ ‎2.求函数y=f(x)在[a,b]上的最大值与最小值的步骤 ‎ ‎(1)求函数y=f(x)在(a,b)内的极值; ‎ ‎(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较, 其中最大的一个是最大 值,最小的一个是最小值. ‎ ‎【难点探究】‎ 难点一 函数的性质的应用 例1、设f(x)是定义在R上的奇函数,当x≤0时,f(x) = 2x2-x,则f(1)=(  )‎ A.-3 B.-1‎ C.1 D.3‎ ‎(2)设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且x∈时,f(x)=-x2,则f(3)+f的值等于________.‎ ‎【点评】 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的实际通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.本题第(2)小题中,实际上就是用已知条件给出了这个函数,解决问题的基本思路有两条:一条是把这个函数在整个定义域上的解析式求出,然后再求解具体的函数值;一条是推证函数的性质,把求解的函数值转化到已知函数解析式的区间上的函数值.本题根据对任意t∈R都有f(t)=f(1-t)还可以推证函数y=f(x)的图象关于直线x=对称,函数又是奇函数,其图象关于坐标原点对称,这样就可以画出这个函数在上的图象,再根据周期性可以把这个函数的图象拓展到整个定义域上,进而通过函数的图象解决求指定的函数值,研究这个函数的零点等问题,在复习中要注意这种函数图象的拓展.‎ ‎【变式探究】设偶函数f(x)对任意x∈R,都有f(x+3)=-,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=(  )‎ A.10 B. C.-10 D.- ‎【答案】B ‎ ‎【解析】 根据f(x+3)=-,可得f(x+6)=-=-=f(x),所以函数y=f(x)的一个周期为6.所以f(107.5)=f(108-0.5)=f(-0.5)=f(0.5)=f(-2.5+3)=-=.‎ 难点二 函数的图象的分析判断 例2、函数f(x)=axm(1-x)n在区间[0,1]上的图象如图2-1所示,则m,n的值可能是(  )‎ 图2-1‎ A.m=1,n=1 B.m=1,n=2‎ C.m=2,n=1 D.m=3,n=1‎ ‎【答案】B ‎ ‎【点评】‎ ‎ 函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。‎ ‎【变式探究】函数y=-2sinx的图象大致是(  )‎ 图2-2‎ ‎【答案】C ‎ ‎【解析】 由f(-x)=-f(x)知函数f(x)为奇函数,所以排除A;又f′(x)=-2cosx,当x在x轴右侧,趋向0时,f′(x)<0,所以函数f(x)在x轴右边接近原点处为减函数,当x=2π时,f′(2π)=-2cos2π=-<0,所以x=2π应在函数的减区间上,所以选C.‎ 难点三 基本初等函数性质及其应用 例3、设函数f(x)=则满足f(x)≤2的x的取值范围是(  )‎ A.[-1,2] B.[0,2] C.[1,+∞) D.[0,+∞)‎ ‎【点评】 本题要注意在分段函数上分段处理的方法,另外就是要注意在解对数方程或者不等式时一定要注意其真数大于零的隐含条件.高考对指数函数、对数函数和幂函数的性质的考查主要是应用,应用这些函数的性质分析函数图象、解不等式、比较数值的大小等,如下面的变式.‎ ‎【变式探究】已知a=5log23.4,b=5log43.6,c=log30.3,则(  )‎ A.a>b>c B.b>a>c C.a>c>b D.c>a>b ‎【答案】C ‎ ‎【解析】 令m=log23.4,n=log43.6,l=log3 ‎,在同一坐标系下作出三个函数的图象,由图象可得m>l>n,‎ 又∵y=5x为单调递增函数,‎ ‎∴a>c>b.‎ 难点四 函数的零点和方程根的分布 例4、 (1)对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-2)⊗(x-x2),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是(  )‎ A.(-∞,-2]∪ B.(-∞,-2]∪ C.∪ D.∪ ‎(2)已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N,则n=________.‎ ‎【答案】(1)B (2)2‎ ‎【解析】 (1)f(x)= ‎ ‎= ‎ 则f(x)的图象如图.‎ ‎∵y=f(x)-c的图象与x轴恰有两个公共点,‎ ‎∴y=f(x)与y=c的图象恰有两个公共点,‎ 由图象知c≤-2,或-11>loga2,b-3<10),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为;(2)其他面的淋雨量之和,其值为.记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时,‎ ‎(1)写出y的表达式;‎ ‎(2)设00)的一条切线,则实数b=________.‎ ‎(2)已知f(x)为偶函数,当x≥0时,f(x)=-(x-1)2+1,满足f[f(a)]=的实数a的个数为________.‎ 当f(a)=-1-时,a有2个值对应;‎ 当f(a)=-1+时,a有2个值对应;‎ 当f(a)=1-时,a有4个值对应,‎ 综上可知满足f[f(a)]=的实数a有8个.‎ 难点八 导数在研究函数中的应用 例8、已知函数f(x)=(x-k)2e.‎ ‎(1)求f(x)的单调区间;‎ ‎(2)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.‎ ‎【解答】 (1)f′(x)=(x2-k2)e.‎ 令f′(x)=0,得x=±k.‎ 当k>0时,f(x)与f′(x)的情况如下:‎ x ‎(-∞,-k)‎ ‎-k ‎(-k,k)‎ k ‎(k,+∞)‎ f′(x)‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎  ‎4k2e-1‎  ‎0‎  所以,f(x)的单调递增区间是(-∞,-k)和(k,+∞);单调递减区间是(-k,k).‎ 当k<0时,f(x)与f′(x)的情况如下:‎ x ‎(-∞,k)‎ k ‎(k,-k)‎ ‎-k ‎ (-k,+∞)‎ f′(x)‎ ‎-‎ ‎0‎ ‎+‎ ‎0‎ ‎-‎ f(x)‎  ‎0‎  ‎4k2e-1‎  ‎   所以,f(x)的单调递减区间是(-∞,k)和(-k,+∞);单调递增区间是(k,-k).‎ ‎(2)当k>0时,因为f(k+1)=e>,所以不会有∀x∈(0,+∞),f(x)≤.‎ 当k<0时,由(1)知f(x)在(0,+∞)上的最大值是f(-k)=.‎ 所以∀x∈(0,+∞),f(x)≤,等价于f(-k)=≤.‎ 解得-≤k<0.‎ 故当∀x∈(0,+∞),f(x)≤时,k的取值范围是.‎ ‎【点评】 单调性是函数的最重要的性质,函数的极值、最值等问题的解决都离不开函数的单调性,含有字母参数的函数的单调性又是综合考查不等式的解法、分类讨论的良好素材.函数单调性的讨论是高考考查导数研究函数问题的最重要的考查点.函数单调性的讨论往往归结为一个不等式、特别是一元二次不等式的讨论,对一元二次不等式,在二次项系数的符号确定后就是根据其对应的一元二次方程两个实根的大小进行讨论,即分类讨论的标准是先二次项系数、再根的大小.对于在指定区间上不等式的恒成立问题,一般是转化为函数最值问题加以解决,如果函数在这个指定的区间上没有最值,则可转化为求函数在这个区间上的值域,通过值域的端点值确定问题的答案.‎ ‎ 【变式探究】设f(x)=-x3+x2+2ax.‎ ‎(1)若f(x)在上存在单调递增区间,求a的取值范围;‎ ‎(2)当00,则函数g(x)在R上单调递增.又因为g(-1)= f(-1)-(-2+4)=0,故g(x)>0,即f(x)>2x+4的解集为(-1,+).‎ ‎8.(2011年高考浙江卷理科1)设函数,则实数=‎ ‎(A)-4或-2 (B)-4或2 (C)-2或4 (D)-2或2‎ ‎10. (2011年高考全国新课标卷理科9)由曲线,直线及轴所围成的图形的面积为 ‎(A) (B)4 (C) (D)6‎ ‎【答案】C ‎【解析】因为的解为,所以两图像交点为,于是面积 故选C ‎14. (2011年高考江西卷理科3)若,则的定义域为 ‎ A. B. C. D.‎ ‎【答案】A ‎【解析】要使原函数有意义,只须,即,解得,故选A.‎ ‎15. (2011年高考江西卷理科4)若,则的解集为 ‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】因为,原函数的定义域为,所以由可得,解得,故选C.‎ ‎16. (2011年高考湖南卷理科6)由直线与曲线所围成的封闭图形的面积为 ‎ A. B. ‎1 C. D. ‎ ‎17. (2011年高考湖南卷理科8)设直线与函数的图像分别交于点,则当达到最小时的值为 ‎ A. 1 B. C. D. ‎ 答案:D 解析:将代入中,得到点的坐标分别为,,从而 对其求导,可知当且仅当时取到最小。故选D ‎18.(2011年高考广东卷理科4)设函数和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) ‎ ‎ A.+|g(x)|是偶函数 B.-|g(x)|是奇函数 C.|| +g(x)是偶函数 D.||- g(x)是奇函数 ‎【解析】A.设 ‎,所以是偶函数,所以选A.‎ ‎【答案】A ‎19.(2011年高考湖北卷理科6)已知定义在R上的奇函数和偶函数满足且,若,则 A.2 B. C. D.‎ ‎20. (2011年高考湖北卷理科10) 放射性元素由于不断有原子放射微粒子而变成其他元素,其含量不断减少,这种现象称为衰变,假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位年)满足函数关系:,其中为t=0时铯137的含量,已知t=30时,铯137含量的变化率是—10ln2(太贝克/年),则M(60)=‎ A.5太贝克 B.75ln2太贝克 C.150ln2太贝克 D.150太贝克 答案:D ‎ 解析:因为,故其变化率为,又由故,则,所以选D.‎ ‎23.(2011年高考重庆卷理科5)下列区间中,函数 ‎,在其上为增函数的是 ‎(A) (B) ‎ ‎(C) (D) ‎ ‎26. (2011年高考全国卷理科8)曲线y=+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为 ‎(A) (B) (C) (D)1‎ ‎27.(2011年高考全国卷理科9)设是周期为2的奇函数,当0≤x≤1时,=,则=‎ ‎ (A) - (B) (C) (D)‎ ‎【答案】A ‎【解析】 故选A ‎28.(2011年高考福建卷理科5)(e2+2x)dx等于 A.1 B.e‎-1 ‎ C.e D.e+1‎ ‎【答案】C ‎【解析】由定积分的定义容易求得答案.‎ ‎30.(2011年高考上海卷理科16)下列函数中,既是偶函数,又是在区间上单调递减的函数为 ( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】由偶函数,排除B;由减函数,又排除B、D,故选A.‎ 二、填空题:‎ ‎1. (2011年高考山东卷理科16)已知函数=当2<a<3<b<4时,函数的零点 .‎ ‎2.(2011年高考浙江卷理科11)若函数为偶函数,则实数 。‎ ‎【答案】0‎ ‎【解析】,‎ 则 ‎3. (2011年高考广东卷理科12)函数在 处取得极小值.‎ ‎【答案】2‎ ‎【解析】2.得。所以函数的单调递增区间为,减区间为,所以函数在x=2处取得极小值。‎ ‎4.(2011年高考陕西卷理科11)设,若,则 ‎ ‎【答案】1‎ ‎【解析】‎ ‎5. (2011年高考四川卷理科13)计算 .‎ 答案:‎ 解析:.‎ ‎6. (2011年高考四川卷理科16)函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:‎ 函数=(xR)是单函数;‎ 若为单函数,‎ 若f:AB为单函数,则对于任意bB,它至多有一个原象;‎ 函数f(x)在某区间上具有单调性,则f(x)一定是单函数.‎ 其中的真命题是 .(写出所有真命题的编号)‎ ‎7.(2011年高考江苏卷2)函数的单调增区间是__________‎ ‎【答案】‎ ‎【解析】考察函数性质,容易题。因为,所以定义域为,由复合函数的单调性知:函数的单调增区间是.‎ ‎8.(2011年高考江苏卷8)在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是________‎ 三、解答题:‎ ‎1. (2011年高考山东卷理科21)(本小题满分12分)‎ 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.‎ ‎(Ⅰ)写出关于的函数表达式,并求该函数的定义域;‎ ‎(Ⅱ)求该容器的建造费用最小时的.‎ ‎【解析】(I)设容器的容积为V,‎ 由题意知 故 由于 因此 所以建造费用 因此 ‎ (II)由(I)得 由于 当 令 所以 ‎2.(2011年高考浙江卷理科22)(本题满分14分)设函数(Ⅰ)若为的极值点,求实数(Ⅱ)求实数的取值范围,使得对任意恒有成立 注:为自然对数的底数 ‎【解析】(Ⅰ)因为所以因为为的极值点所以解得或经检验,符合题意,‎ 所以或 当 时 即 在内单调递增,在内单调递减,‎ 在 内单调递增。所以要使对恒成立,‎ 只要成立,由,知 将(3)代入(1)得又。注意到函数在内单调递增,故 ‎ 再由(3)以及函数在 内单调递增,可得 ,‎ 由(2)解得 ,所以 综上,的取值范围为.‎ ‎【2010高考试题】‎ ‎(2010全国卷2理数)(10)若曲线在点 处的切线与两个坐标围成的三角形的面积为18,则 ‎ ‎(A)64 (B)32 (C)16 (D)8 ‎ ‎(2010全国卷2理数)(2).函数的反函数是 A. B.‎ C. D.‎ ‎(2010辽宁理数)(1O)已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值 范围是 ‎ (A)[0,) (B) (D) ‎ ‎【答案】D ‎【解析】因为,即tan a≥-1,所以 ‎(2010江西理数)12.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为,则导函数的图像大致为 ‎(2010江西理数)9.给出下列三个命题:‎ ‎①函数与是同一函数;高☆考♂资♀源 ‎②若函数与的图像关于直线对称,则函数与的图像也关于直线对称;‎ ‎③若奇函数对定义域内任意x都有,则为周期函数。‎ 其中真命题是 A. ①② B. ①③ C.②③ D. ②‎ ‎(2010重庆理数)(5) 函数的图象 A. 关于原点对称 B. 关于直线y=x对称 C. 关于x轴对称 D. 关于y轴对称 解析: 是偶函数,图像关于y轴对称 答案:D ‎(2010四川理数)(2)下列四个图像所表示的函数,在点处连续的是 ‎(A) (B) (C) (D)‎ 解析:由图象及函数连续的性质知,D正确.w_w_w.ks 5u.c om 答案:D ‎(2010天津理数)(16)设函数,对任意,‎ 恒成立,则实数的取值范围是 .‎ ‎(2010北京理数)(18)(本小题共13分)‎ 已知函数()=In(1+)-+(≥0)。‎ ‎(Ⅰ)当=2时,求曲线=()在点(1,(1))处的切线方程;‎ ‎(Ⅱ)求()的单调区间。‎ 解:(I)当时,,‎ ‎ 由于,,‎ 所以曲线在点处的切线方程为 即 ‎ ‎(II),.‎ 当时,.‎ ‎ ‎ ‎ ‎