- 1.12 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学常用公式精华总结
1. 元素与集合的关系
,.
2.德摩根公式
.
3.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.
4.二次函数的解析式的三种形式
(1)一般式;
(2)顶点式;
(3)零点式.
5.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.
6.闭区间上的二次函数的最值
二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(可画图解决问题)
(1)当a>0时,若,则;
,,.
(2)当a<0时,若,则,若,则,.
7.真值表
p
q
非p
p或q
p且q
真
真
假
真
真
真
假
假
真
假
假
真
真
真
假
假
假
真
假
假
8.常见结论的否定形式
原结论
反设词
原结论
反设词
是
不是
至少有一个
一个也没有
都是
不都是
至多有一个
至少有两个
大于
不大于
至少有个
至多有()个
小于
不小于
至多有个
至少有()个
对所有,
成立
存在某,
不成立
或
且
对任何,
不成立
存在某,
成立
且
或
9.四种命题的相互关系
原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p
10.充要条件
(1)充分条件:若,则是充分条件.
(2)必要条件:若,则是必要条件.
(3)充要条件:若,且,则是充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
11.函数的单调性
(1)设那么
上是增函数;
上是减函数.
(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.
12.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.
13.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
14.两个函数图象的对称性
(1)函数与函数的图象关于直线(即轴)对称.
(2)同底的指数和对数函数互为反函数,图像关于直线y=x对称。
15.几个函数方程的周期(约定a>0) ,则的周期T=a;
16.分数指数幂
(1)(,且).
(2)(,且).
17.根式的性质
(1).
(2)当为奇数时,; 当为偶数时,.
18.有理指数幂的运算性质
(1) .
(2) .
(3).
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
19.指数式与对数式的互化式
.
20.对数的换底公式
(,且,,且, ).
推论 (,且,,且,, ).
21.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1);
(2) ;
(3).
22.数列的同项公式与前n项的和的关系
( 数列的前n项的和为).
23.等差数列的通项公式 ;
其前n项和公式为 .
24.等比数列的通项公式;
其前n项的和公式为 或.
25.同角三角函数的基本关系式
,=,
27.正弦、余弦的诱导公式: 奇变偶不变,符号看象限。
28.和角与差角公式
;
;
.
=
(辅助角所在象限由点的象限决定, ).
29.二倍角公式
.
.
.
30.三角函数的周期公式
函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;
函数,(A,ω,为常数,且A≠0,ω>0)的周期.
31.正弦定理 .
32.余弦定理
;;.
33.面积定理
(1)(分别表示a、b、c边上的高).
(2).
34.三角形内角和定理
在△ABC中,有
sinC=sin(A+B),cosC=-cos(A+B),tanC=-tan(A+B)
35.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
36.向量的数量积的运算律:
(1) a·b= b·a (交换律);
(2)(a)·b= (a·b)=a·b= a·(b);
(3)(a+b)·c= a ·c +b·c.
37.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
38.向量平行的坐标表示
设a=,b=,且b0,则ab(b0).
39. a与b的数量积(或内积)
a·b=|a||b|cosθ.
40. a·b的几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
41.平面向量的坐标运算
(1)设a=,b=,则a+b=.
(2)设a=,b=,则a-b=.
(3)设A,B,则.
(4)设a=,则a=.
(5)设a=,b=,则a·b=.
42.两向量的夹角公式
(a=,b=).
43.平面两点间的距离公式
=
(A,B).
44.向量的平行与垂直
设a=,b=,且b0,则
A||bb=λa .
ab(a0)a·b=0.
45.三角形的重心坐标公式
△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是
.
46. 三角形四“心”向量形式的充要条件
设为所在平面上一点,角所对边长分别为,则
(1)为的外心.
(2)为的重心.
(3)为的垂心.
(4)为的内心.
47.常用不等式:
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).
(3)
(4).
48.均值定理
已知都是正数,则有
(1)若积是定值,则当时和有最小值;
(2)若和是定值,则当时积有最大值.
49.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.
;
.
50.含有绝对值的不等式
当a> 0时,有
.
或.
51.指数不等式与对数不等式
(1)当时,
;
.
(2)当时,
;
52..斜率公式
(、).
53.直线的五种方程
(1)点斜式 (直线过点,且斜率为).
(2)斜截式 (b为直线在y轴上的截距).
(3)两点式 ()(、 ()).
(4)截距式 (分别为直线的横、纵截距,)
(5)一般式 (其中A、B不同时为0).
54.两条直线的平行和垂直
(1)若,
①;
②.
(2)若,,且A1、A2、B1、B2都不为零,
①;
②;
55.四种常用直线系方程
(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.
(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.
(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.
(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量.
56.点到直线的距离
(点,直线:).
57. 或所表示的平面区域
设直线,则或所表示的平面区域是:
若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.
若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.
58. 或所表示的平面区域
设曲线(),则
或所表示的平面区域是:
所表示的平面区域上下两部分;
所表示的平面区域上下两部分.
59. 圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 (>0).
60.点与圆的位置关系
点与圆的位置关系有三种
若,则
点在圆外;点在圆上;点在圆内.
61.直线与圆的位置关系
直线与圆的位置关系有三种:
;
;
.
其中.
62.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,
;
;
;
;
.
63.椭圆的标准方程及简单的几何性质
64.椭圆的的内外部
(1)点在椭圆的内部.
(2)点在椭圆的外部.
65.双曲线的内外部
(1)点在双曲线的内部.
(2)点在双曲线的外部.
66.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为渐近线方程:.
(2)若渐近线方程为双曲线可设为.
(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).
67. 抛物线的焦半径公式
抛物线焦半径.
过焦点弦长.
68.抛物线上的动点可设为P或 P,其中 .
69.抛物线的内外部
(1)点在抛物线的内部.
点在抛物线的外部.
(2)点在抛物线的内部.
点在抛物线的外部.
(3)点在抛物线的内部.
点在抛物线的外部.
(4) 点在抛物线的内部.
点在抛物线的外部.
70.直线与圆锥曲线相交的弦长公式 或AB=
(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率).
71.证明直线与直线的平行的思考途径
(1)转化为判定共面二直线无交点;
(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;
(4)转化为线面垂直;
(5)转化为面面平行.
72.证明直线与平面的平行的思考途径
(1)转化为直线与平面无公共点;
(2)转化为线线平行;
(3)转化为面面平行.
73.证明平面与平面平行的思考途径
(1)转化为判定二平面无公共点;
(2)转化为线面平行;
(3)转化为线面垂直.
74.证明直线与直线的垂直的思考途径
(1)转化为相交垂直;
(2)转化为线面垂直;
(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.
113.证明直线与平面垂直的思考途径
(1)转化为该直线与平面内任一直线垂直;
(2)转化为该直线与平面内相交二直线垂直;
(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面的交线垂直.
75.证明平面与平面的垂直的思考途径
(1)转化为判断二面角是直二面角;
(2)转化为线面垂直.
76.空间向量的加法与数乘向量运算的运算律
(1)加法交换律:a+b=b+a.
(2)加法结合律:(a+b)+c=a+(b+c).
(3)数乘分配律:λ(a+b)=λa+λb.
77.共线向量定理
对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.
三点共线.
、共线且不共线且不共线.
78.球的半径是R,则
其体积,
其表面积.
79.柱体、锥体的体积
(是柱体的底面积、是柱体的高).
(是锥体的底面积、是锥体的高).
80.互斥事件A,B分别发生的概率的和
P(A+B)=P(A)+P(B).
81.个互斥事件分别发生的概率的和
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
82.独立事件A,B同时发生的概率
P(A·B)= P(A)·P(B).
83.n个独立事件同时发生的概率
P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).
84.回归直线方程
,其中.
85.相关系数r
|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.
86. 函数在点处的导数的几何意义
函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.
87.几种常见函数的导数
(1) (C为常数).
(2) .
(3) .
(4) .
(5) ;.
(6) ; .
88.导数的运算法则
(1).
(2).
(3).
89.判别是极大(小)值的方法
当函数在点处连续时,
(1)如果在附近的左侧,右侧,则是极大值;
(2)如果在附近的左侧,右侧,则是极小值.
90.复数的相等
.()
91.复数的模(或绝对值)
==.
92.复数的四则运算法则
(1);
(2);
(3);
(4).