- 305.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题探究课四 高考中立体几何问题的热点题型
高考导航 1.立体几何是高考的重要内容,每年都有选择题或填空题或解答题考查.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).
热点一 空间点、线、面的位置关系及空间角的计算(规范解答)
空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.
【例1】 (满分12分)(2017·湖州模拟)如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.
(1)求证:平面PBD⊥平面COD;
(2)求直线PD与平面BDC所成角的正弦值.
满分解答 (1)证明 ∵OB=OC,又∵∠ABC=,
∴∠OCB=,∴∠BOC=.
∴CO⊥AB.2分
又PO⊥平面ABC,
OC⊂平面ABC,∴PO⊥OC.
又∵PO,AB⊂平面PAB,PO∩AB=O,
∴CO⊥平面PAB,即CO⊥平面PDB.4分
又CO⊂平面COD,
∴平面PDB⊥平面COD.6分
(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.
设OA=1,则PO=OB=OC=2,DA=1.
则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),
∴=(0,-1,-1),=(2,-2,0),=(0,-3,1).
8分
设平面BDC的一个法向量为n=(x,y,z),
∴∴
令y=1,则x=1,z=3,∴n=(1,1,3).10分
设PD与平面BDC所成的角为θ,
则sin θ=
==.
即直线PD与平面BDC所成角的正弦值为.
12分
❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.
❷得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO⊥平面PDB”.
❸得计算分:解题过程中计算准确是得满分的根本保证.
如第(2)问中求法向量n,计算线面角正弦值sin θ.
利用向量求空间角的步骤
第一步:建立空间直角坐标系.
第二步:确定点的坐标.
第三步:求向量(直线的方向向量、平面的法向量)坐标.
第四步:计算向量的夹角(或函数值).
第五步:将向量夹角转化为所求的空间角.
第六步:反思回顾.查看关键点、易错点和答题规范.
【训练1】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.
(1)证明:EF∥B1C.
(2)求二面角EA1DB1的余弦值.
(1)证明 由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.
(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以,,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.
设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量=,=(0,1,-1),由n1⊥,
n1⊥得
(-1,1,1)为其一组解,所以可取n1=(-1,1,1).
设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).
则cos〈n1,n2〉===.
所以二面角E-A1D-B1的余弦值为.
热点二 立体几何中的探索性问题
此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:
(1)根据条件作出判断,再进一步论证;
(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.
【例2】 (2016·北京卷)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.
(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,
所以AB⊥平面PAD,所以AB⊥PD.
又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.
(2)解 取AD的中点O,连接PO,CO.
因为PA=PD,所以PO⊥AD.
因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.
因为CO⊂平面ABCD,所以PO⊥CO.
因为AC=CD,所以CO⊥AD.
如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).
设平面PCD的一个法向量为n=(x,y,z),则
即
令z=2,则x=1,y=-2.所以n=(1,-2,2).
又=(1,1,-1),所以cos〈n,〉==-.
所以直线PB与平面PCD所成角的正弦值为.
(3)解 设M是棱PA上一点,则存在λ∈[0,1],使得=λ.
因此点M(0,1-λ,λ),=(-1,-λ,λ).
因为BM⊄平面PCD,所以要使BM∥平面PCD,
则·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.
所以在棱PA上存在点M,使得BM∥平面PCD,此时=.
探究提高 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.
【训练2】 (2015·天津卷改编)在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.
(1)求证:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正弦值;
(3)在棱A1B1上是否存在点E,使得直线NE与平面ABCD所成角的正弦值为?若存在,求出线段A1E的长;若不存在,请说明理由.
解 如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),又因为M,N分别为B1C和D1D的中点,
所以M,N(1,-2,1).
(1)证明 依题意,可得n=(0,0,1)为平面ABCD的一个法向量,=,由此可得·n=0,又因为直线MN⊄平面ABCD,所以MN∥平面ABCD.
(2)=(1,-2,2),=(2,0,0),设n1=(x1,y1,z1)为平面ACD1的一个法向量,则
即
不妨设z1=1,可得n1=(0,1,1).
设n2=(x2,y2,z2)为平面ACB1的一个法向量,则
又=(0,1,2),
得不妨设z2=1,可得n2=(0,-2,1).
因此有cos〈n1,n2〉==-,
于是sin〈n1,n2〉=,
所以二面角D1-AC-B1的正弦值为.
(3)假设存在点E,使得NE与平面ABCD所成角的正弦值为.依题意,可设=λ,其中λ∈[0,1],
则E(0,λ,2),从而=(-1,λ+2,1),又n=(0,0,1)为平面ABCD的一个法向量,
由已知,得|cos〈,n〉|=
==,
整理得λ2+4λ-3=0,解得λ=-2±.
又因为λ∈[0,1],所以λ=-2,
因此存在点E,满足题设条件,
且线段A1E=-2.
热点三 立体几何中的折叠问题
将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.
【例3】 (2016·全国Ⅱ卷)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.
(1)证明:D′H⊥平面ABCD;
(2)求二面角B-D′A-C的正弦值.
(1)证明 由已知得AC⊥BD,AD=CD.
又由AE=CF得=,故AC∥EF.
因此EF⊥HD,从而EF⊥D′H.
由AB=5,AC=6得DO=BO==4.
由EF∥AC得==.
所以OH=1,D′H=DH=3.
于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.
又D′H⊥EF,而OH∩EF=H,
所以D′H⊥平面ABCD.
(2)解 如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D′(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).
设m=(x1,y1,z1)是平面ABD′的一个法向量,
则即
所以可取m=(4,3,-5).
设n=(x2,y2,z2)是平面ACD′的一个法向量,
则即
所以可取n=(0,-3,1).
于是cos〈m,n〉===-.
sin〈m,n〉=.
因此二面角B-D′A-C的正弦值是.
探究提高 立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.
【训练3】 (2015·陕西卷)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.
又CD∥BE,所以CD⊥平面A1OC.
(2)解 由已知,平面A1BE⊥平面BCDE,
又由(1)知,BE⊥OA1,BE⊥OC,
所以∠A1OC为二面角A1-BE-C的平面角,
所以∠A1OC=.
如图,以O为原点,,,分别为x轴、y轴、z轴正方向建立空间直角坐标系,
因为A1B=A1E=BC=ED=1,BC∥ED,
所以B,E,A1,C,
得=,=,==(-,0,0).
设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1); 得取n2=(0,1,1),
从而cos θ=|cos〈n1,n2〉|==,
即平面A1BC与平面A1CD夹角的余弦值为.