- 1.31 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高三数学一轮复习精练:立体几何
一、选择题
1.在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是 ( )
A. B. C. D. w.w.w.k.s.5.u.c.o.m
2.若正四棱柱的底面边长为1,与底面成60°角,
则到底面的距离为 ( )
A. B.1 C. D.
3.一空间几何体的三视图如图所示,则该几何体的体积为( ).
2
2
侧(左)视图
2
2
2
正(主)视图
A. B.
C. D.
俯视图
4.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( )
(A) (B) (C) (D)
6.已知二面角α-l-β为 ,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )
(A) (B)2 (C) (D)4
7.已知正四棱柱中,为中点,则异面直线与所成的角的余弦值为 ( )
A. B. C. D.
8.如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是
(A)
(B)
(C)三棱锥的体积为定值
(D)异面直线所成的角为定值
9.平面六面体中,既与共面也与共面的棱的条数为( )
A.3 B.4 C.5 D.6
10.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是
A.
B.平面
C. 直线∥平面
D.
11.如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是 ( )
A. B. C. D.
12.在正四棱柱中,顶点到对角线和到平面的距离分别为和,则下列命题中正确的是( )
A.若侧棱的长小于底面的变长,则的取值范围为
B.若侧棱的长小于底面的变长,则的取值范围为
C.若侧棱的长大于底面的变长,则的取值范围为
D.若侧棱的长大于底面的变长,则的取值范围为
二、填空题
13.如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点作,为垂足.设,则的取值范围是 .
14.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。
15.如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小是 。
16.已知三个球的半径,,满足,则它们的表面积,,,满足的等量关系是___________.
三、解答题
17.(本题满分12分)如图,平面平面,
是以为斜边的等腰直角三角形,分别为,
,的中点,,.
(I)设是的中点,证明:平面;
(II)证明:在内存在一点,使平面,并求点到,的距离.
18.(本小题共14分)
如图,四棱锥的底面是正方形,,点E在棱PB上.
(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
19.(本小题共14分)
如图,在三棱锥中,底面,
点,分别在棱上,且
(Ⅰ)求证:平面;
(Ⅱ)当为的中点时,求与平面所成的角的大小;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
20.(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角;w.w.w.k.s.5.u.c.o.m
(3)求点到平面的距离.
21.(本小题满分12分)
如图,正方形所在平面与平面四边形所在平面互相垂直,△
是等腰直角三角形,
(I)求证:;
(II)设线段、的中点分别为、,求证: ∥
(III)求二面角的大小。
22.(本小题满分12分)
如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1).
(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
参考答案
1.【答案】:C
【解析】:取BC的中点E,则面,w.w.w.k.s.5.u.c.o.m
,因此与平面所成角即为,设,则,,即有.
2.【答案】D
【解析】本题主要考查正四棱柱的概念、
直线与平面所成的角以及直线与平面的距离等概念(第4题解答图)
属于基础知识、基本运算的考查.
依题意,,如图,
,故选D.
3.【答案】:C
【解析】:该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,所以体积为
所以该几何体的体积为.
【命题立意】:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地w.w.w.k.s.5.u.c.o.m
计算出.几何体的体积.
4.【答案】:B.
【解析】:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,,则,反过来则不一定.所以“”是“”的必要不充分条件 .
【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.
5.【答案】:D
【解析】:设的中点为D,连结D,AD,易知即为异面直线 与所成的角,由三角余弦定理,
易知.故选D
6.【答案】:C
【解析】:如图分别作
,连
,
又
当且仅当,即重合时取最小值。
7.【答案】:C
【解析】:令则,连∥ 异面直线与所成的角即与所成的角。在中由余弦定理易得。
8.【答案】:D
【解析】:A正确,
易证B显然正确,;C正确,可用等积法求得;D错误。.
9.【答案】:C
【解析】:如图,用列举法知合要求的棱为:、、、、,
10.【答案】:D
【考点定位】本小题考查空间里的线线、线面关系,基础题。(同文6)
解:由三垂线定理,因AD与AB不相互垂直,排除A;作于,
因面面ABCDEF,而AG在面ABCDEF上的射影在AB上,而AB与BC不相互垂直,故排除B;由,而EF是平面PAE的斜线,故排除C,故选择D。
解析2:设低面正六边形边长为,则,由平面可知,且,所以在中有直线与平面所成的角为
,故应选D。
11.【答案】:B
【考点定位】本小题考查球的截面圆性质、球面距,基础题。(同文9)
【解析】:由知截面圆的半径
,故,所以两点的球面距离为,故选择B。w.w.w.k.s.5.u.c.o.m
解析2:过球心作平面的垂线交平面与,,则在直线上,由于,,所以,由为等腰直角三角形可得,所以为等边三角形,则两点的球面距离是。
12.【答案】:C
【解析】:设底面边长为1,侧棱长为,过作。
在中,,由三角形面积关系得w.w.w.k.s.5.u.c.o.m
设在正四棱柱中,由于,
所以平面,于是,所以平面,故为点到平面 的距离,在中,又由三角形面积关系得于是,于是当,所以,所以
二、填空题(4题,每题5分)
13.【答案】:
【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于
,又,因此有,则有,因此的取值范围是 w.w.w.k.s.5.u.c.o.m
14.【答案】(0,-1,0) w.w.w.k.s.5.u.c.o.m
【解析】设由可得故
15.【答案】:。
【考点定位】本小题考查异面直线的夹角,基础题。
【解析】:不妨设棱长为2,选择基向量,则w.w.w.k.s.5.u.c.o.m
,故填写。
法2:取BC中点N,连结,则面,∴是在面上的射影,由几何知识知,由三垂线定理得,故填写。
16.【答案】
【解析】,,同理:,即R1=,R2=,R3=,由得
三.解答题(6题,共70分)
17.证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,w.w.w.k.s.5.u.c.o.m
则,由题意得,因,因此平面BOE的法向量为
,得,又直线不在平面内,因此有平面
(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.w.w.w.k.s.5.u.c.o.m
18.【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力.
(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,
∵,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面.
(Ⅱ)设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE//PD,,又∵,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴,即AE与平面PDB所成的角的大小为.
【解法2】如图,以D为原点建立空间直角坐标系,
设
则,
(Ⅰ)∵,
∴,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面.
(Ⅱ)当且E为PB的中点时,,
设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∵,
∴,
∴,即AE与平面PDB所成的角的大小为.
19.【解法1】本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
又,∴AC⊥BC.
∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,
∴,
又由(Ⅰ)知,BC⊥平面PAC,w.w.w.k.s.5.u.c.o.m
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴,
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,
∴与平面所成的角的大小.
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.
∴在棱PC上存在一点E,使得AE⊥PC,这时,
故存在点E使得二面角是直二面角.
【解法2】如图,以A为原煤点建立空间直角坐标系,
设,由已知可得
.
(Ⅰ)∵, ∴,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,
∴,
∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵,
∴.
∴与平面所成的角的大小. w.w.w.k.s.5.u.c.o.m
(Ⅲ)同解法1.
20.解:方法(一):
(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD.
因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,
所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.
(2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD,
由(1)知,PD⊥平面ABM,则MN是PN在平面ABM上的射影,
所以 就是与平面所成的角,
且
所求角为
(3)因为O是BD的中点,则O点到平面ABM的距离等于D点到平面ABM距离的一半,由(1)知,PD⊥平面ABM于M,则|DM|就是D点到平面ABM距离.
因为在Rt△PAD中,,,所以为中点,,则O点到平面ABM的距离等于。
方法二:
(1)同方法一;
(2)如图所示,建立空间直角坐标系,则,,, ,,,
设平面的一个法向量,由可得:,令,则,即.设所求角为,则,
所求角的大小为.
(3)设所求距离为,由,得:
21.【解析】解法一:
因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC平面ABCD, BE平面BCE, w.w.w.k.s.5.u.c.o.m
BC∩BE=B
所以…………………6分
(II)取BE的中点N,连结CN,MN,则MNPC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面BCE. …………………………………………8分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=, w.w.w.k.s.5.u.c.o.m
,
在Rt⊿FGH中, ,
∴ 二面角的大小为……………………………12分
解法二: 因等腰直角三角形,,所以
又因为平面,所以⊥平面,
所以
即两两垂直;如图建立空间直角坐标系,
(I) 设,则,
∵,∴,
从而
,
于是,
∴⊥,⊥
∵平面,平面, ∴
(II),从而
于是
∴⊥,又⊥平面,直线不在平面内,
故∥平面
(III)设平面的一个法向量为,并设=(
即 w.w.w.k.s.5.u.c.o.m
取,则,,从而=(1,1,3)
取平面D的一个法向量为
,故二面角的大小为
22.本小题主要考察空间直线与直线、直线与平面的位置关系和二面角等基础知识,考查空间想象能力、推理论证能力和运算求解能力。(满分12分)
(Ⅰ)证发1:连接BD,由底面是正方形可得ACBD。
SD平面ABCD,BD是BE在平面ABCD上的射影,
由三垂线定理得ACBE.
(II)解法1:SD平面ABCD,CD平面ABCD, SDCD.
又底面ABCD是正方形, CDAD,又SDAD=D,CD平面SAD。
过点D在平面SAD内做DFAE于F,连接CF,则CFAE,
故CFD是二面角C-AE-D 的平面角,即CFD=60°
在Rt△ADE中,AD=, DE= , AE= 。
于是,DF=
在Rt△CDF中,由cot60°=
得, 即=3
, 解得=