- 411.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
浙江高考历年真题之概率大题
(教师版)
1、(2005年)袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.
(Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E.
(Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
解析:(Ⅰ)(i)
(ii)随机变量的取值为0,1,2,3,;
由n次独立重复试验概率公式,得
;
(或)
随机变量的分布列是
0
1
2
3
P
的数学期望是
(Ⅱ)设袋子A中有m个球,则袋子B中有2m个球
由,得
2、(2006年)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球。现从甲,乙两袋中各任取2个球。
(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
解析:(Ⅰ)记“取到的4个球全是红球”为事件A。
(Ⅱ)记“取到的4个球至多有1个红球”为事件B,“取到的4个球只有1个红球”为事件,“取到的4个球全是白球”为事件。
由题意,得
=
=
所以
化简,得解得,或(舍去), 故 。
3、(2008年)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
解析:(Ⅰ)解:(i)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,
设袋中白球的个数为,则,得到.故白球有5个.
(ii)随机变量的取值为0,1,2,3,分布列是
0
1
2
3
的数学期望:.
(Ⅱ)证明:设袋中有个球,其中个黑球,由题意得,
所以,,故.
记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则
.
所以白球的个数比黑球多,白球个数多于,红球的个数少于.故袋中红球个数最少.
4、(2009年)在这个自然数中,任取个数.
(I)求这个数中恰有个是偶数的概率;
(II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时
的值是).求随机变量的分布列及其数学期望.
解析:(Ⅰ)记“这3个数中恰有一个是偶数”为事件,则.
(Ⅱ)随机变量的取值为0,1,2,的分布列是
0
1
2
所以的数学期望.
5、(2010年)
如图,一个小球从M处投入,通过管道自上面下落到A或B或C,已知小球从每个叉口落入左右两个管道的可能性是相等的。 某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖.
(I)已知获得1,2,3等奖的折扣率分别为50%,70%,90%,记随机变量为获得等奖的折
扣率,求随机变量的分布列及数学期望
(II)若有3人次(投入1球为1人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求
P().
解析:(Ⅰ)由题意得的分布列为
50%
70%
90%
P
则
(Ⅱ)解:由(Ⅰ)知,获得1等奖或2等奖的概率为
由题意得,则
6、(2012年)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量为取出此3球所得分数之和。
(Ⅰ)求的分布列; (Ⅱ)求的数学期望。
解析:
浙江高考历年真题之概率大题
1、(2005年)袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.
(Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E.
(Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
2、(2006年)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球。现从甲,乙两袋中各任取2个球。
(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
3、(2008年)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
4、(2009年)在这个自然数中,任取个数.
(I)求这个数中恰有个是偶数的概率;
(II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数
和,此时的值是).求随机变量的分布列及其数学期望.
5、(2010年)如图,一个小球从M处投入,通过管道自上面下落到A或B或C,已知小球从每个叉口落入左右两个管道的可能性是相等的。 某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖.
(I)已知获得1,2,3等奖的折扣率分别为50%,70%,90%,记随机变量为获得等奖的折
扣率,求随机变量的分布列及数学期望
(II)若有3人次(投入1球为1人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求
P().
6、(2012年)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量为取出此3球所得分数之和。
(Ⅰ)求的分布列; (Ⅱ)求的数学期望。