- 310.33 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年高考试题数学(理科)直线与圆
一、选择题:
1.(2011年高考江西卷理科9)若曲线:与曲线:有四个不同的交点,则实数m的取值范围是
A.(,) B.(,0)∪(0,)
c.[,] D.(,)∪(,+)
答案:B
解析:曲线表示以为圆心,以1为半径的圆,曲线表示过定点,与圆有两个交点,故也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应,由图可知,m的取值范围应是
2.(2011年高考重庆卷理科8)(8)在圆内,过点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为
(A) (B) (C) (D)
二、填空题:
1.(2011年高考安徽卷理科15)在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果与都是无理数,则直线不经过任何整点
③直线经过无穷多个整点,当且仅当经过两个不同的整点
④直线经过无穷多个整点的充分必要条件是:与都是有理数
⑤存在恰经过一个整点的直线
【命题意图】本题考查直线方程、直线过定点、充分必要条件、存在性问题、命题真假的判定,考查学生分析、判断、转化、解决问题能力,此类问题正确的命题要给出证明,错误的要给出反例,此题综合性较强,难度较大.
【答案】①③⑤
【解析】①正确,设,当是整数时,是无理数,(,)必不是整点.
②不正确,设=,=-,则直线=过整点(1,0).
③正确,直线经过无穷多个整点,则直线必然经过两个不同整点,显然成立;反之成立,设直线经过两个整点,,则的方程为,令=(),则∈Z,且=也是整数,故经过无穷多个整点.
④不正确,由③知直线经过无穷多个整点的充要条件是直线经过两个不同的整点,设为,,则的方程为,
∵直线方程为的形式,∴,∴=,
∴,∈Q,反之不成立,如,则,若∈Z,则Z,即,∈Q,得不到经过无穷个整点.
⑤正确,直线=只过整点(1,0).
2.(2011年高考重庆卷理科15)设圆位于抛物线与直线所组成的封闭区域(包含边界)内,则圆的半径能取到的最大值为
解析:。 为使圆的半径取到最大值,显然圆心应该在x轴上且与直线相切,设圆的半径为,则圆的方程为,将其与联立得:,令,并由,得:
三、解答题:
1. (2011年高考山东卷理科22)(本小题满分14分)
已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.
(Ⅰ)证明和均为定值;
(Ⅱ)设线段PQ的中点为M,求的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.
【解析】(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,
所以因为在椭圆上,因此①
又因为所以②;由①、②得
此时
(2)当直线的斜率存在时,设直线的方程为
由题意知m,将其代入,得,
其中即…………(*)
又
所以
因为点O到直线的距离为所以
,又
整理得且符合(*)式,
此时
综上所述,结论成立。
(II)解法一:
(1)当直线的斜率存在时,由(I)知
因此
(2)当直线的斜率存在时,由(I)知
所以
所以,当且仅当时,等号成立.
综合(1)(2)得|OM|·|PQ|的最大值为
解法二:
因为
所以
即当且仅当时等号成立。
因此 |OM|·|PQ|的最大值为
(III)椭圆C上不存在三点D,E,G,使得
证明:假设存在,
由(I)得
因此D,E,G只能在这四点中选取三个不同点,
而这三点的两两连线中必有一条过原点,与矛盾,
所以椭圆C上不存在满足条件的三点D,E,G.
2. (2011年高考广东卷理科19)设圆C与两圆中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程.
(2)已知点且P为L上动点,求的最大值及此时点P的坐标.
【解析】(1)解:设C的圆心的坐标为,由题设条件知
化简得L的方程为
(2)解:过M,F的直线方程为,将其代入L的方程得
解得
因T1在线段MF外,T2在线段MF内,故
,若P不在直线MF上,在中有
故只在T1点取得最大值2。
3.(2011年高考福建卷理科17)(本小题满分13分)
已知直线l:y=x+m,m∈R。
(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;
(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。
【命题意图】本题考查圆的方程、直线与圆相切知识、两直线的位置关系、直线与抛物线位置关系等基础知识,考查函数与方程思想、数形结合思想、分类与整合思想,是中档题.
【解析】(I)由题意知(0, ),∵以点(2,0)为圆心的圆与直线相切与点,
∴==,解得=2,∴圆的半径=,
∴所求圆的方程为;
(II)∵直线关于轴对称的直线为,:,∈,
∴:,代入得,
==,
当<1时,>0,直线与抛物线C相交;
当=1时,=0,直线与抛物线C相切;
当>1时,<0,直线与抛物线C相离.
综上所述,当=1时,直线与抛物线C相切,当≠1时,直线与抛物线C不相切.
【点评】本题考查内容和方法很基础,考查面较宽,是很好的一个题.
4.(2011年高考上海卷理科23)(18分)已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。
(1)求点到线段的距离;
(2)设是长为2的线段,求点集所表示图形的面积;
(3)写出到两条线段距离相等的点的集合,其中
,
是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是①2分,②
6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。
①。
②。
③。
解:⑴ 设是线段上一点,则
,当时,。
⑵ 设线段的端点分别为,以直线为轴,的中点为原点建立直角坐标系,
则,点集由如下曲线围成
,
其面积为。
⑶① 选择,
② 选择。
③ 选择。