• 298.50 KB
  • 2021-05-26 发布

高中物理新课标人教版必修2优秀教案:圆周运动

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
5 圆周运动 整体设计 教材首先列举生活中的圆周运动,以及科学研究所涉及的范围,大到星体的运动,小到 电子的绕核运转,接着通过比较自行车大小齿轮以及后轮的运动快慢引入线速度、角速度的 概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系.教材设计环环 相扣、结构严谨,使整节课浑然一体,密不可分. 本节课可以通过生活实例(自行车齿轮转动或皮带传动装置),让学生切实感受到做圆周 运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述.学习线速 度的概念,可以根据匀速圆周运动的概念引导学生认识弧长与时间比值保持不变的特点,进 而引出线速度的大小与方向.学习角速度和周期的概念时,应向学生说明这两个概念是根据匀 速圆周运动的特点和描述运动的需要而引入的,即物体做匀速圆周运动时,每通过一段弧长 都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间比 值来描述,由此引入角速度的概念.又根据匀速圆周运动具有周期性的特点,物体沿圆周转动 的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念.讲述角速度的概念 时,不要求向学生强调角速度的矢量性.在讲述概念的同时,要让学生体会到匀速圆周运动的 特点:线速度的大小、角速度、周期和频率保持不变的圆周运动. 教学重点 线速度、角速度、周期概念,及其相互关系的理解和应用,匀速圆周运动的特点. 教学难点 角速度概念的理解和匀速圆周运动是变速曲线运动的理解. 课时安排 1课时 三维目标 知识与技能 1.了解物体做圆周运动的特征. 2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会 用它们的公式进行计算. 3.理解线速度、角速度、周期之间的关系. 过程与方法 1.联系日常生活中所观察到的各种圆周运动的实例,找出共同特征. 2.知道描述物体做圆周运动快慢的方法,进而引出描述物体做圆周运动快慢的物理量:线速度 v、角速度ω、周期 T、转速 n等. 3.探究线速度与角速度之间的关系. 情感态度与价值观 1.经历观察、分析总结及探究等学习活动,培养学生实事求是的科学态度. 2.通过亲身感悟,使学生获得对描述圆周运动快慢的物理量(线速度、角速度、周期等)以及 它们相互关系的感性认识. 课前准备 多媒体课件、机械钟表、小球、细线、风扇、雨伞、水等. 教学过程 导入新课 演示导入 演示机械式钟表时针、分针、秒针的运动情况(可以拨动钟表的调节旋钮),让学生观察 后说出不同指针运动的特点,从而引出圆周运动的概念. 情景导入 课件展示生活中常见的圆周运动: 观览车 脱水桶 生活中,我们一定见过很多类似的运动,它们的运动轨迹是一些圆,我们把这种运动叫 做圆周运动. 推进新课 引导学生列举生活中的圆周运动. 参考案例: 1.田径场弯道上赛跑的运动员的运动; 2.风车的转动; 3.地球的自转与公转; 4.自行车的前后轮、大小齿轮转动等. 研究物体的运动时,我们往往关心的是物体的运动快慢.对于做直线运动的物体,我们用单位 时间内的位移来描述物体的运动快慢. 问题:对于圆周运动又如何描述它们的运动快慢呢? 一、线速度 演示 1:在台式电风扇的叶片上分别标记红、蓝两种颜色的点,到中间轴的距离不等.用手拨 动叶片转动,注意要慢,让学生明显观察到两点的运动轨迹. 让学生仔细观察,说出哪个点运动得快,你是怎么比较的. 讨论交流 我们发现,两个点在相同的时间内通过的弧长不相等,通过的弧长长的点运动得快,通 过的弧长短的点运动得慢.这样,做圆周运动的物体通过的弧长与所用时间的比值能够描述物 体运动的快慢,我们把它称之为线速度. 定义:做圆周运动的质点通过的弧长 s与通过这段弧长所用时间 t的比值叫做圆周运动的 线速度. v= t s 物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动. 说明:(1)线速度是物体做匀速圆周运动的瞬时速度. (2)线速度是矢量,它既有大小,也有方向(大小:v= t s ,方向:在圆周各点的切线方向). (3)匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变. (4)线速度的单位:m/s. 针对以上说明展开讨论. 演示 2:水淋在雨伞上,同时摇动伞柄. 观察:水滴沿切线方向飞出. 思考:这说明什么? 结论:飞出的水滴在离开伞的瞬间,由于惯性要保持原来的速度方向,因而表明了切线方向 即为此时刻线速度的方向. 例 1 分析下图中,A、B两点的线速度有什么关系. 解析:主动轮通过皮带、链条、齿轮等带动从动轮的过程中,皮带(链条)上各点以及两轮 边缘上各点在相同的时间内通过的弧长相等,所以它们线速度大小相等. 答案:大小相等 二、角速度 学生阅读教材并思考以下几个问题: 1.角速度是描述圆周运动快慢的物理量; 2.角速度等于半径转过的角度φ和所用时间 t的比值;(ω= t  ) 3.角速度的单位是 rad/s. 结合数学知识,交流讨论角速度的单位. 说明:对某一确定的匀速圆周运动而言,角速度ω是恒定的. 4.周期、频率和转速 学生阅读教材并思考以下几个问题: 做圆周运动的质点运动一周所用的时间叫周期;周期的倒数(单位时间内质点完成周期 性运动的次数)叫频率;每秒钟转过的圈数叫转速. 注明:下列情况下,同一轮上各点的角速度相同. 三、线速度、角速度、周期之间的关系 既然线速度、角速度、周期都是用来描述匀速圆周运动快慢的物理量,那么它们之间有 什么样的关系呢? 分析:一物体做半径为 r的匀速圆周运动,问: 1.它运动一周所用的时间叫周期,用 T表示,它在周期 T内转过的弧长为 2πr.由此可知它的 线速度为 T r2 . 2.一个周期 T内转过的角度为 2π,物体的角速度为 T 2 . 通过思考总结得到:           T T rv   2 2 v=ωr 讨论 v=ω·r (1)当 v一定时,ω与 r成反比. (2)当ω一定时,v与 r成正比. (3)当 r一定时,v与ω成正比. 思考:物体做匀速圆周运动时,v、ω、T是否改变?(ω、T不变,v大小不变、方向改变) 例 2 如右图所示皮带传动装置,主动轴 O1上有两个半径分别为 R和 r的轮,O2上的轮半径 为 r′,已知 R=2r,r′= R 3 2 ,设皮带不打滑. 图 5-5-5 问:ωA:ωB=? ωB:ωC=? vA:vB=? vA:vC=? 解答:因为 A、B同轴,故ωA:ωB=1∶1 因 B与 C用皮带传动,所以 vB:vC=1∶1 vB=ωBR vC=ωCr′ 3 23 2 2 1' '  R R R r v v r v R v C B C B C B   2 1 2 1 1 1  R r v v B A B A   2 1 3 2 2 1 '  R R r r v v C B C A C A     . 课堂训练 1.一汽车发动机的曲轴每分钟转 2 400周,求: (1)曲轴转动的周期与角速度; (2)距转轴 r=0.2 m点的线速度. 解:(1)由于曲轴每秒钟转 60 2400 周,周期 T= s 40 1 ;而每转一周为 2π rad,因此曲轴转动的角 速度ω= 40/1 2 rad/s=251 rad/s. (2)已知 r=0.2 m,因此这一点的线速度 v=ωr =251×0.2 m/s=50.2 m/s. 以上可知匀速转动物体的角速度与周期之间的关系是ω= T 2 . 2.一个圆环,以竖直直径 AB为轴匀速转动,如图所示,则环上M、N两点的线速度的大小之 比 vM∶vN=__________;角速度之比ωM∶ωN=___________;周期之比 TM∶TN=__________. 答案: 3∶1 1∶1 1∶1 课堂小结 本节课通过描述做匀速圆周运动物体的快慢问题,引入了匀速圆周运动的线速度与角速 度及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系. 匀速圆周运动的实质是匀速率圆周运动,它是一种变速运动. 描述匀速圆周运动快慢的物理量: 线速度:v= t s   角速度:ω= t  周期与频率:f= T 1 相互关系:v= T r2 ω= T 2 v=rω 布置作业 教材“问题与练习”1、2、5. 板书设计 5.圆周运动 一、描述匀速圆周运动的有关物理量 1.线速度 (1)定义:做圆周运动的物体通过的弧长与所用时间的比值 (2)公式:v= t s   (s为弧长,非位移) (3)物理意义 2.角速度 (1)定义:做圆周运动的物体的半径扫过的角度与所用时间的比值 (2)公式:ω= t  (3)单位:rad/s (4)物理意义 3.转速和周期 二、线速度、角速度、周期间的关系 v=rω ω= T 2 活动与探究 主题:测量调级电风扇叶片的角速度和线速度. 过程:小组合作,调节电风扇的调速开关,分别测定电风扇叶片转动的角速度和线速度.首先 制定测量方案,包括选取的工具、测量的步骤及测量数据、注意事项等;小组讨论方案的可 行性;实验进行,得出数据,合作讨论交流;写出报告. 习题详解 1.解答:位于赤道和位于北京的两个物体随地球自转做匀速圆周运动的角速度相等,都是 ω= 360024 14.322    T T rad/s=7.3×10-5 rad/s. 位于赤道的物体随地球自转做匀速圆周运动的线速度 v1=ωR=467 m/s 位于北京的物体随地球自转做匀速圆周运动的角速度 v2=ωR′cos40°=358 m/s. 2.解答:分针的周期为 T1=1 h,时针的周期为 T2=12 h (1)分针与时针的角速度之比为ω1∶ω2=T2∶T1=12∶1. (2)分针针尖与时针针尖的线速度之比为 v1∶v2=ω1r1∶ω2r2=14.4∶1. 3.解答:(1)A、B两点线速度相等,角速度与半径成反比. (2)A、C两点角速度相等,线速度与半径成正比. (3)B、C两点半径相等,线速度与角速度成正比. 4.解答:假设脚踏板每 2 s转 1圈,要知道在这种情况下自行车前进的速度有多大,还需要测 量的三个轮子的半径 r1、r2、r3.由题意可知轮 1边缘的线速度 自行车的传动机构 v1=ω1r1= 1 1 2 r T  ω2= 21 1 2 1 2 2 2 rT r v v r v   v3=ω3r3=ω2r3= 21 312 rT rr 其中 T1等于 2 s v3为轮 3边缘的线速度,即等于自行车前进的速度. 实际测量这里略去. 说明:本题的用意是让学生结合实际情况来理解匀速圆周运动以及传动装置之间线速度、角 速度、半径之间的关系.但是,车轮上任意一点的运动都不是圆周运动,其轨迹都是滚轮线,所 以在处理这个问题时,应该以轮轴为参考系,地面与轮接触而不打滑,所以地面向右运动的 速度等于后轮上一点的线速度. 5.解答:(1)因为电动机的转速为 n=300 r/min=5 r/s 所以一个扇区通过磁头所用的时间是 t1= 90 1 /5 18 1  sr r s. (2)1 s内可读的扇区数为 1 s×5 r/s×18/r=90(个),故可读字节数=512×90=46 080(字节). 说明:本题的用意是让学生结合实际情况来理解匀速圆周运动. 设计点评 本教学设计通过大量的生活实例,引导出圆周运动的定义.对比描述直线运动的物体运动 快慢的速度概念,并结合实例得出线速度以及角速度的概念,并通过分析归纳得出线速度和 角速度的关系.整个设计紧紧和学生的生活实际结合,化抽象为具体,较好地突破了难点.