- 704.00 KB
- 2021-06-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
能力导练十八 探究弹性势能的表达式
基础巩固
1.(多选)关于弹簧的弹性势能,下列说法正确的是( )
A.弹簧的弹性势能跟弹簧被拉伸(或压缩)的长度有关
B.弹簧的弹性势能跟弹簧的劲度系数有关
C.同一弹簧,在弹性限度内,形变量越大,弹性势能越大
D.弹性势能的大小跟使弹簧发生形变的物体有关
解析:弹性势能的大小跟形变量的大小有关,在弹性限度内,形变量越大,弹性势能也越大;对于弹簧来说,弹性势能还与弹簧的劲度系数有关,当形变量一定时,劲度系数越大的弹簧,其弹性势能也越大,故A、B、C三项正确.
答案:ABC
2.在探究弹簧的弹性势能的表达式时,下面猜想有一定道理的是( )
①重力势能与物体被举起的高度h有关,所以弹性势能与弹簧的长度有关
②重力势能与物体被举起的高度h有关,所以弹性势能很可能与弹簧拉伸或压缩的长度有关
③重力势能与物体所受的重力mg大小有关,所以弹性势能很可能与弹簧劲度系数有关
④重力势能与物体的质量有关,所以弹性势能很可能与弹簧的质量大小有关
A.①② B.③④ C.②③ D.①④
解析:弹簧的弹性势能与弹簧的劲度系数和弹簧的形变量有关,与弹簧的长度,质量等因素无关,所以②③正确,故选C.
答案:C
9
图1
3.如图1所示,小明玩蹦蹦杆,在小明将蹦蹦杆中的弹簧向下压缩的过程中,小明的重力势能、弹簧的弹性势能的变化是( )
A.重力势能不变
B.重力势能增大
C.弹性势能减少
D.弹性势能增大
解析:小明将蹦蹦杆中的弹簧向下压缩的过程中,小明重心不断下降,重力势能减少,弹簧压缩量不断增加,弹性势能增大,D选项正确.
答案:D
4.在一次演示实验中,一压紧的弹簧沿一粗糙水平面射出一小球,测得弹簧压缩的距离d和小球在粗糙水平面上滚动的距离s如表所示.由此表可以归纳出小球滚动的距离s跟弹簧压缩的距离d之间的关系,并猜测弹簧的弹性势能Ep跟弹簧压缩的距离d之间的关系,分别是(选项中k1、k2是常量)( )
实验次数
1
2
3
4
d/cm
0.50
1.00
2.00
4.00
s/cm
4.98
20.02
80.10
319.5
A.s=k1d Ep=k2d B.s=k1d Ep=k2d2
C.s=k1d2 Ep=k2d D.s=k1d2 Ep=k2d2
9
解析:分析实验数据,可看出在误差允许的范围内=20,即s=k1d2.由生活常识可猜测,弹性势能越大,小球滚动的距离越远,Ep∝s,则Ep∝d2,Ep=k2d2.
答案:D
5.如图2所示的几个运动过程中,物体的弹性势能增加的是( )
图2
A.如图甲,撑杆跳高的运动员上升的过程中,杆的弹性势能
B.如图乙,人拉长弹簧的过程中,弹簧的弹性势能
C.如图丙,模型飞机用橡皮筋发射出去的过程中,橡皮筋的弹性势能
D.如图丁,小球被弹簧向上弹起的过程中,弹簧的弹性势能
解析:选项A、C、D中物体的形变量均减小,所以弹性势能均减小,B中物体的形变量增大,所以弹性势能增加,故B正确.
答案:B
图3
6.(多选)某缓冲装置可抽象成图3所示的简单模型.图中K1、K2为原长相等,劲度系数不同的轻质弹簧.下列表述正确的是( )
9
A.缓冲效果与弹簧的劲度系数无关
B.垫片向右移动时,两弹簧产生的弹力大小相等
C.垫片向右移动时,两弹簧的长度保持相等
D.垫片向右移动时,两弹簧的弹性势能发生改变
解析:因两弹簧串联,且为轻质弹簧,故两弹簧的弹力大小总相等,B正确;由胡克定律可知,弹力大小相同,而劲度系数不同,当垫片向右移动时,两弹簧被压缩的长度则会不同,故此时弹簧的长度将会不同,C错;在同样大小的力作用下,弹簧的劲度系数越大,弹簧被压缩的长度则会越小,即A错;当弹簧被压缩时,弹簧的弹性势能均会增大,D正确.
答案:BD
7.
图4
(多选)如图4所示,在一次蹦极运动中,人由高空跳下到最低点的整个过程中,下列说法中正确的是( )
A.重力对人做正功
B.人的重力势能减小
C.橡皮绳对人做正功
D.橡皮绳的弹性势能增加
解析:人在下落的过程中,重力对人做正功,人的重力势能不断减小,A、B正确;橡皮绳不断伸长,弹力对人做负功,故橡皮绳的弹性势能不断增大,C错误,D正确.
9
答案:ABD
8.
图5
一根弹簧的弹力(F)与伸长量(l)之间的变化关系图线如图5所示,那么弹簧由伸长量8 cm到伸长量4 cm的过程中,弹力做功和弹性势能的变化量为( )
A.3.6 J,-3.6 J
B.-3.6 J,3.6 J
C.1.8 J,-1.8 J
D.-1.8 J,1.8 J
解析:F-l围成的面积表示弹力的功.
W=×0.08×60 J-×0.04×30 J=1.8 J.
弹性势能减少1.8 J,C对.
答案:C
综合应用
图6
9.一竖直弹簧下端固定于水平地面上,小球从弹簧的正上方高为h
9
的地方自由落到弹簧上端,如图6所示,经几次反弹后小球落在弹簧上静止于某一点A处,则( )
A.h愈大,弹簧在A点的压缩量愈大
B.弹簧在A点的压缩量与h无关
C.小球第一次到达A点时的速度与h无关
D.h愈小,小球第一次到达A点时的速度愈大
解析:不管h大小如何,最终小球静止在A处时,重力与弹力平衡,即有mg=F=kx,所以在A点压缩量与h无关.不要受中间过程的影响,而应把握住最终的条件,故应选B项.
答案:B
10.如图7所示,质量相等的两木块间连有一弹簧.今用力F缓慢向上提A,直到B恰好离开地面.开始时物体A静止在弹簧上面,设开始时弹簧弹性势能为Ep1,B刚要离开地面时,弹簧的弹性势能为Ep2,则关于Ep1、Ep2大小关系及弹性势能变化ΔEp说法中正确的是( )
图7
A.Ep1=Ep2 B.Ep1>Ep2
C.ΔEp>0 D.ΔEp<0
解析:开始时弹簧形变量为x1,有kx1=mg.
它离开地面时形变量为x2,有kx2=mg,由于x1=x2,
所以Ep1=Ep2,ΔEp=0,A正确.
答案:A
9
11.如图8所示,在光滑水平面上有A、B两物体,中间连一弹簧,已知mA=2mB,今用水平恒力F向右拉B,当A、B一起向右加速运动时,弹簧的弹性势能为Ep1,如果以水平恒力F向左拉A,当A、B一起向左加速运动时,弹簧的弹性势能为Ep2,则Ep1________(填“>”“<”或“=”)Ep2.
图8
解析:当F向右拉B时,A、B一起向右加速运动,A、B具有相同的加速度,对A、B整体,有F=(mA+mB)a,又因A的加速度与整体的加速度相同,对A物体,有kx1=mAa=.同理,当F向左拉A时,kx2=,因为mA=2mB,当F向右拉B时弹簧的伸长量大,所以Ep1>Ep2.
答案:>
12.弹簧原长l0=15 cm,受拉力作用后弹簧逐渐伸长,当弹簧伸长到l1=20 cm时,作用在弹簧上的力为400 N.
(1)弹簧的劲度系数k为多少?
(2)在该过程中弹力做了多少功?
(3)弹簧的弹性势能变化了多少?
图9
解析:(1)k== N/m=8 000 N/m.
(2)由于F=kl,作出F—l图象如图9所示,求出图中画斜线部分面积,即为弹力做功的绝对值,由于在伸长过程中弹力F方向与位移方向相反,故弹力F在此过程中做负功.
9
可得W=-(l1-l0)=-×0.05 J=-10 J.
(3)ΔEp=-W=10 J,即弹性势能增大10 J.
答案:(1)8 000 N/m (2)-10 J (3)10 J
探究拓展
13.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值.
解析:拉力F与弹簧的伸长量l成正比,故在F-l图象中是一条倾斜直线,如图10所示,直线下的相关面积表示功的大小.其中,线段OA下的三角形面积表示第一个过程中拉力所做的功W1,线段AB下的梯形面积表示第二个过程中拉力所做的功W2.显然,两块面积之比为1∶3,
即W1∶W2=1∶3.
图10
答案:1∶3
14.
图11
9
如图11所示,质量为m的物体静止在地面上,物体上面连着一个直立的轻质弹簧,弹簧的劲度系数为k.现用手拉住弹簧上端,使弹簧上端缓慢提升高度h,此时物体已经离开地面,求拉力所做的功.
解析:拉力做功,增加了物体的重力势能和弹簧的弹性势能.
物体刚好离开地面时,弹簧的伸长量为
Δx=.
可见,物体上升的高度为Δh=h-Δx=h-.
从而,物体重力势能的增加量为
ΔEp=mgΔh=mg.
弹簧的弹性势能的增加量为
ΔEp′=kl2=k(Δx)2=k=.
所以,拉力所做的功为
W=ΔEp+ΔEp′
=mg+=mg.
答案:mg
9
相关文档
- 2020高中物理第七章机械能守恒定律2021-05-272页
- 2020高中物理第七章机械能守恒定律2021-05-2734页
- 高中物理新课标人教版教学课件:第72021-05-2633页
- 高中物理人教版必修2课件第7章 5探2021-05-2619页
- 2019-2020学年高中物理第七章机械2021-05-254页
- 高中物理新课标人教版必修2优秀教2021-05-256页
- 高一物理同步练习题解析 7-5 探究2021-05-254页
- 2019-2020学年高中物理人教版必修22021-05-2515页
- 高中物理人教版必修二第七章第五节2021-05-222页
- 高考一轮复习功 功率 重力势能 2021-05-134页