• 510.00 KB
  • 2021-06-09 发布

高考卷 05高考文科数学(浙江卷)试题及答案

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2005年高考文科数学浙江卷试题及答案 第Ⅰ卷 (选择题 共60分)‎ ‎ 一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的 ‎(1)函数的最小正周期是 A. B. C. D.‎ ‎(2)设全集,,,则=‎ A. B. C. D.‎ ‎(3)点(1,-1)到直线的距离是( )‎ ‎(A) (B) (C) (D)‎ ‎(4)设,则( )‎ ‎(A) (B)0 (C) (D) 1‎ ‎(5)在的展开式中,含的项的系数是( )‎ ‎(A) (B) 5 (C) -10 (D) 10‎ ‎(6)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:‎ 卡片号码 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 取到的次数 ‎13‎ ‎8‎ ‎5‎ ‎7‎ ‎6‎ ‎13‎ ‎18‎ ‎10‎ ‎11‎ ‎9‎ 则取到号码为奇数的频率是 A. B. C. D.‎ ‎(7)设、 为两个不同的平面,、为两条不同的直线,且,,有如下的两个命题:①若∥,则∥;②若⊥,则⊥.‎ 那么 ‎(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 ‎(C) ①②都是真命题 (D) ①②都是假命题 ‎(8)已知向量,,且,则由的值构成的集合是 A. B. C. D.‎ ‎(9)函数的图象与直线相切,则 ‎ A. B. C. D.1‎ ‎(10)设集合,则A所表示的平面区域(不含边界的阴影部分)是( )‎ ‎ ‎ ‎(A) (B) (C) (D)‎ 第Ⅱ卷 (非选择题 共100分)‎ 二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置 ‎ ‎11.函数(∈R,且≠-2)的反函数是_________.‎ ‎12.设M、N是直角梯形ABCD两腰的中点,DE⊥AB于E(如图).现将△ADE沿DE折起,使二面角A-DE-B为45°,此时点A在平面BCDE内的射影恰为点B,则M、N的连线与AE所成角的大小等于_________.‎ ‎ ‎ ‎13.过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.‎ ‎14.从集合{P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).‎ 三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤 ‎ 15.已知函数 ‎ ‎ (Ⅰ) 求的值;‎ ‎ (Ⅱ) 设∈(0,),,求sin的值.‎ ‎ ‎ ‎ 16.已知实数成等差数列,成等比数列,且,求 ‎17.袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.‎ ‎(Ⅰ) 从A中有放回地摸球,每次摸出一个,共摸5次求 ‎ (i)恰好有3摸到红球的概率;(ii)第一次、第三次、第五次均摸到红球的概率.‎ ‎(Ⅱ) 若A、B两个袋子中的球数之比为,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.‎ ‎18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC.‎ ‎ (Ⅰ)求证∥平面 ‎ (Ⅱ) 求直线与平面PBC所成角的大小; ‎ ‎19.如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴A1A2的长为4,左准线与x轴的交点为M,|MA1|∶|A1F1|=2∶1.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)若点P在直线上运动,求∠F1PF2的最大值.‎ ‎20.函数f(x)和g(x)的图象关于原点对称,且f(x)=x2=2x.‎ ‎(Ⅰ)求函数g(x)的解析式;‎ ‎(Ⅱ)解不等式g(x)≥f(x)-|x-1|.‎ ‎(Ⅲ)若在上是增函数,求实数的取值范围 ‎2005年高考文科数学浙江卷试题及答案 参考答案 一、选择题:本题考查基本知识和基本运算每小题5分,满分50分 ‎(1)B (2)A (3)D (4)D (5)C (6)A (7)D (8)C (9)B (10)A 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分 ‎(11);(12);(13)2;(14)5832‎ 三、解答题:‎ ‎(15)本题主要考查三角函数的倍角公式、两角和的公式等基础知识和基本的运算能力满分14分 解:(Ⅰ)∵‎ ‎∴‎ ‎(Ⅱ) ‎ ‎∴‎ ‎∵, ∴, 故 ‎(16)本题主要考查等差、等比数列的基本知识考查运算及推理能力满分14分 解:由题意,得 由(1)(2)两式,解得 将代入(3),整理得 ‎(17)本题主要考查排列组合、相互独立事件同时发生的概率等基本知识,同时考查学生的逻辑思维能力满分14分 解:(Ⅰ)(ⅰ) ‎ ‎(ⅱ).‎ ‎ (Ⅱ)设袋子A中有个球,袋子B中有个球,‎ 由,得 ‎(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分 解:方法一:‎ ‎(Ⅰ) ∵O、D分别为AC、PC中点,‎ ‎ ‎ ‎(Ⅱ)‎ 方法二:‎ ‎(19)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分 解:(Ⅰ)设椭圆方程为,半焦距为,则 ‎(Ⅱ)‎ ‎(20)本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分 解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则 ‎∵点在函数的图象上 ‎∴‎ ‎(Ⅱ)由 当时,,此时不等式无解 当时,,解得 因此,原不等式的解集为 ‎(Ⅲ)‎ ‎①‎ ‎②‎ ⅰ)‎ ⅱ)‎