• 870.00 KB
  • 2021-06-12 发布

【数学】四川省内江市威远中学2019-2020学年高一上学期12月月考试题 (解析版)

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
www.ks5u.com 四川省内江市威远中学2019-2020学年高一上学期12月月考数学试题 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.已知集合,,则( )‎ A. B. ‎ C. D. ‎ ‎【答案】A ‎【解析】集合,‎ 则.‎ 故选A.‎ ‎2.下列函数中,定义域是R且为增函数的是(  )‎ A. y=2-x B. y=x C. y=log2x D. y=-‎ ‎【答案】B ‎【解析】选项A中,函数y=2-x的定义域为R,但为减函数,故A不正确;‎ 选项B中,函数y=x的定义域是R且为增函数,故B正确;‎ 选项C中,函数y=log2x的定义域为,故C不正确;‎ 选项D中,函数y=-的定义域为,故D不正确.‎ 选B.‎ ‎3.设,,,则a,b,c的大小关系是(  )‎ A. B. ‎ C. D. ‎ ‎【答案】B ‎【解析】因为在上是为增函数,且,‎ 所以,即.‎ ‎,而.‎ 所以.‎ 故选B.‎ ‎4.函数的图象大致是( )‎ A. B. ‎ C. D. ‎ ‎【答案】D ‎【解析】因为,故为奇函数,排除A,B.‎ 又当时,故有零点,排除C.‎ 故选D ‎5.函数的零点所在的区间为( )‎ A. B. C. D. ‎ ‎【答案】B ‎【解析】∵函数单调递增, ∴f(0)=-4,f(1)=-1,‎ f ‎(2)=7>0, 根据零点的存在性定理可得出零点所在的区间是, 故选B.‎ ‎6.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,‎ 则下列说法正确的是()‎ A. 甲比乙先出发 B. 乙比甲跑的路程多 C. 甲、乙两人的速度相同 D. 甲比乙先到达终点 ‎【答案】D ‎【解析】从图中直线可以看出,甲的图象斜率大于乙的图象斜率,,甲、乙同时出发,跑了相同的路程,甲比乙先到达.‎ 故选D.‎ ‎7.已知函数g(x)=loga(x﹣3)+2(a>0,a≠1)的图象经过定点M,若幂函数f(x)=xα的图象过点M,则α的值等于(  )‎ A. ﹣1 B. C. 2 D. 3‎ ‎【答案】B ‎【解析】∵y=loga(x﹣3)+2(a>0,a≠1)图象过定点M,‎ ‎∴M(4,2),‎ ‎∵点M(4,2)也在幂函数f(x)=xα的图象上,‎ ‎∴f(4)=4α=2,解得α=,‎ 故选B.‎ ‎8.化简的结果为( )‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】.‎ 故选:C ‎9.若函数为偶函数,且在(0,+∞)上是减函数,又,则的解集为 ( )‎ A. (-3, 3) B. (-∞,-3)∪(3,+∞)‎ C. (-∞,-3)∪(0,3) D. (-3,0)∪(3,+∞)‎ ‎【答案】D ‎【解析】函数为偶函数,在(0,+∞)上是减函数可得在上递增,不等式变形为,或 结合函数图像可得解集为(-3,0)∪(3,+∞)‎ ‎10.已知函数是R上的增函数,则实数的取值范围是( )‎ A. B. C. D. ‎ ‎【答案】D ‎【解析】∵函数f(x)=是R上的增函数,‎ ‎∴,‎ 解得:a∈[4,8),‎ 故选D.‎ ‎11.函数在R上单调递减,且为奇函数.若,则满足的x 的取值范围是( )‎ A. B. C. D. ‎ ‎【答案】D ‎【解析】因为为奇函数,且,‎ 所以,‎ 因为函数在R上单调递减,‎ 所以,‎ 可得,‎ 所以,‎ 故满足要求的的取值范围为.故选D.‎ ‎12.已知函数, ,若函数有四个零点,则的取值范围( ).‎ A. B. C. D. ‎ ‎【答案】D ‎【解析】若函数有四个零点,即函数和的图象有四个不同的交点,作出函数图象(如图所示),由图象,得当时,两者有4个不同交点;故选D.‎ 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)‎ ‎13.已知函数,若,则________.‎ ‎【答案】-7‎ ‎【解析】根据题意有,可得,所以,故答案是.‎ ‎14.求函数的单减区间______.‎ ‎【答案】令,对称轴为 ‎ 即的单调递减区间为;单调递增区间为 ‎ 又为增函数,由复合函数的单调性,‎ 函数的单减区间为 ‎ 故答案为:‎ ‎15.已知函数,若,则实数的取值范围____________.‎ ‎【答案】‎ ‎【解析】由已知,函数在单调递增,且,故即为,则,解得.‎ ‎16.设函数则满足的x的取值范围是____________.‎ ‎【答案】 ‎ ‎【解析】由题意得: 当时,恒成立,即;当时, 恒成立,即;当时,,‎ 即.综上,x的取值范围是.‎ 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)‎ ‎17.求值:(1)化简:‎ ‎(2)‎ 解:(1)‎ ‎(2)‎ ‎18.已知函数 的定义域为 ,集合 ‎ ‎(1)若 ,求 ;‎ ‎(2)若,求实数 的取值范围.‎ 解:由 得 ,则 ‎ ‎(1)若 ,则 ,‎ ‎(2)由,得 ‎ 由 得 ‎ ‎∴实数 的取值范围是 ‎ ‎19.已知是定义域为R的奇函数,当时,.‎ ‎(1)写出函数的解析式;‎ ‎(2)若方程恰3有个不同的解,求的取值范围.‎ 解:(1)当时,,‎ 是奇函数,‎ ‎.‎ ‎(2)当时,,最小值为;‎ 当,,最大值为.‎ 据此可作出函数的图象,如图所示,‎ 根据图象得,若方程恰有个不同的解,‎ 则的取值范围是.‎ ‎20.李庄村某社区电费收取有以下两种方案供农户选择:‎ 方案一:每户每月收管理费2元,月用电不超过30度,每度0.4元,超过30度时,超过部分按每度0.5元.‎ 方案二:不收管理费,每度0.48元.‎ ‎(1)求方案一收费元与用电量(度)间的函数关系;‎ ‎(2)小李家九月份按方案一交费34元,问小李家该月用电多少度?‎ ‎(3)小李家月用电量在什么范围时,选择方案一比选择方案二更好?‎ 解:(1)当时,;‎ 当时,,‎ ‎∴‎ ‎(2)当时,由,解得,舍去;‎ 当时,由,解得,‎ ‎∴李刚家该月用电70度 ‎(3)设按第二方案收费为元,则,‎ 当时,由,‎ 解得:,解得:,‎ ‎∴;‎ 当时,由,‎ 得:,解得:,‎ ‎∴;‎ 综上,.‎ 故李刚家月用电量在25度到50度范围内(不含25度、50度)时,‎ 选择方案一比方案二更好.‎ ‎21.已知函数.‎ ‎(1)当时,求该函数的值域;‎ ‎(2)求不等式的解集;‎ ‎(3)若对于恒成立,求的取值范围.‎ 解:(1)令,,则,‎ 函数转化为,,‎ 则二次函数,在上单调递减,在上单调递增,‎ 所以当时,取到最小值为,当时,取到最大值为5,‎ 故当时,函数的值域为.‎ ‎(2)由题得,令,‎ 则,即,‎ 解得或,‎ 当时,即,解得,‎ 当时,即,解得,‎ 故不等式的解集为或.‎ ‎(3)由于对于上恒成立,‎ 令,,则 即在上恒成立,‎ 所以在上恒成立,‎ 因为函数在上单调递增,也在上单调递增,‎ 所以函数在上单调递增,它的最大值为,‎ 故时,对于恒成立.‎ ‎22.已知函数f(x)=a-.‎ ‎(1)求f(0);‎ ‎(2)探究f(x)的单调性,并证明你的结论;‎ ‎(3)若f(x)为奇函数,求满足f(ax)0,2x2+1>0,‎ ‎∴f(x1)-f(x2)<0,‎ 即f(x1)