- 301.40 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§4.3 三角函数的图象与性质
考情考向分析 以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有填空题,又有解答题,中档难度.
1.用五点法作正弦函数和余弦函数的简图
(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),,(π,0),,(2π,0).
(2)在余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),,(π,-1),,(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
{x|x∈R,且x≠kπ+}
值域
[-1,1]
[-1,1]
R
周期性
2π
2π
π
奇偶性
奇函数
偶函数
奇函数
递增区间
[2kπ-π,2kπ]
递减区间
[2kπ,2kπ+π]
无
对称中心
(kπ,0)
对称轴方程
x=kπ+
x=kπ
无
概念方法微思考
1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢?
提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期;相邻两个对称中心的距离也为半个周期.
2.思考函数f(x)=Asin(ωx+φ)(A≠0,ω≠0)是奇函数,偶函数的充要条件?
提示 (1)f(x)为偶函数的充要条件是φ=+kπ(k∈Z);
(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)y=sin x在第一、第四象限是增函数.( × )
(2)由sin=sin 知,是正弦函数y=sin x(x∈R)的一个周期.( × )
(3)正切函数y=tan x在定义域内是增函数.( × )
(4)已知y=ksin x+1,x∈R,则y的最大值为k+1.( × )
(5)y=sin|x|是偶函数.( √ )
题组二 教材改编
2.[P44T1]函数f(x)=cos的最小正周期是________.
答案 π
3.[P45T4]y=3sin在区间上的值域是________.
答案
解析 当x∈时,2x-∈,
sin∈,
故3sin∈,
即y=3sin的值域为.
4.[P33例4]函数y=tan的定义域为________.
答案
题组三 易错自纠
5.函数y=tan的图象的对称中心是________.
答案 ,k∈Z
解析 由x+=,k∈Z,得x=kπ-,k∈Z,
所以对称中心是,k∈Z.
6.函数f(x)=4sin的单调递减区间是______________________.
答案 (k∈Z)
解析 f(x)=4sin=-4sin.
所以要求f(x)的单调递减区间,
只需求y=4sin的单调递增区间.
由-+2kπ≤2x-≤+2kπ(k∈Z),得-+kπ≤x≤π+kπ(k∈Z).
所以函数f(x)的单调递减区间是(k∈Z).
7.cos 23°,sin 68°,cos 97°的大小关系是________________.
答案 sin 68°>cos 23°>cos 97°
解析 sin 68°=cos 22°,
又y=cos x在[0°,180°]上是减函数,
∴sin 68°>cos 23°>cos 97°.
题型一 三角函数的定义域
1.函数f(x)=-2tan的定义域是____________.
答案
解析 由正切函数的定义域,得2x+≠kπ+,k∈Z,即x≠+(k∈Z).
2.函数y=的定义域为________________.
答案 (k∈Z)
解析 方法一 要使函数有意义,必须使sin x-cos x≥0.利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象,如图所示.
在[0,2π]内,满足sin x=cos x的x为,,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为.
方法二 利用三角函数线,画出满足条件的终边范围(如图中阴影部分所示).
所以定义域为.
3.函数y=lg(sin x)+ 的定义域为________.
答案
解析 要使函数有意义,则
即
解得
所以2kπ0)的最小正周期为4,则ω=________.
答案
解析 f(x)=cos(ω>0),
由周期计算公式,可得T==4,解得ω=.
(2)已知函数f(x)=sin(ωx-ωπ)(ω>0)的最小正周期为π,则f =________.
答案
解析 ∵T=π,∴ω===2,
∴f(x)=sin=sin 2x,
∴f =sin =.
(3)(2018·无锡市梅材高中期中)已知函数f(x)=sin(ωx+φ)-cos(ωx+φ),ω>0,0<φ<π为偶函数,且其图象的两条相邻对称轴的距离为,则f的值为________.
答案
解析 因为函数f(x)=sin(ωx+φ)-cos(ωx+φ)=2sin为偶函数,
所以φ-=kπ+,k∈Z,令k=0,可得φ=,
根据其图象的两条相邻对称轴间的距离为,
可得·=,所以w=2,
所以f(x)=2sin=2cos 2x,
所以f =2cos=2cos=.
思维升华 (1)对于函数y=Asin(ωx+φ)(A≠0,ω≠0),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点.
(2)求三角函数周期的方法
①利用周期函数的定义.
②利用公式:y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.
跟踪训练2 (1)已知函数f(x)=sin(ωx+φ)的最小正周期为4π,且∀x∈R,有f(x)≤f 成立,则f(x)图象的对称中心是________________.
答案 ,k∈Z
解析 由f(x)=sin(ωx+φ)的最小正周期为4π,
得ω=.
因为f(x)≤f 恒成立,
所以f(x)max=f ,
即×+φ=+2kπ(k∈Z),
又|φ|<,所以φ=,故f(x)=sin.
令x+=kπ(k∈Z),得x=2kπ-(k∈Z),
故f(x)图象的对称中心为(k∈Z).
(2)若直线x=π和x=π是函数y=cos(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ=______________.
答案 kπ-π,k∈Z
解析 由题意,函数的周期T=2×=2π,∴ω==1,∴y=cos(x+φ),当x=π时,函数取得最大值或最小值,即cos=±1,可得π+φ=kπ,k∈Z,
∴φ=kπ-π,k∈Z.
题型四 三角函数的单调性
命题点1 求三角函数的单调区间
例3 (1)若点P(1,-1)在角φ(-π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调递减区间为________.
答案
解析 因为点P(1,-1)在角φ(-π<φ<0)终边上,
所以tan φ=-1,φ=-,
即函数为y=3cos,
令00,函数f(x)=sin在上单调递减,则ω的取值范围是________.
答案
解析 由0,得+<ωx+<ωπ+,
又y=sin x的单调递减区间为,k∈Z,
所以k∈Z,
解得4k+≤ω≤2k+,k∈Z.
又由4k+-≤0,k∈Z且2k+>0,k∈Z,得k=0,所以ω∈.
引申探究
本例中,若已知ω>0,函数f(x)=cos在上单调递增,则ω的取值范围是_______.
答案
解析 函数y=cos x的单调递增区间为[-π+2kπ,2kπ],k∈Z,
则k∈Z,
解得4k-≤ω≤2k-,k∈Z,
又由4k--≤0,k∈Z且2k->0,k∈Z,
得k=1,所以ω∈.
思维升华 (1)已知三角函数解析式求单调区间
求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.
(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.
跟踪训练3 (1)已知函数f(x)=2sin,则函数f(x)的单调递减区间为________________.
答案 (k∈Z)
解析 函数的解析式可化为f(x)=-2sin.
由2kπ-≤2x-≤2kπ+(k∈Z),得-+kπ≤x≤+kπ(k∈Z),
即函数f(x)的单调递减区间为(k∈Z).
(2)(2018·盐城模拟)若函数g(x)=sin在区间和上均单调递增,则实数a的取值范围是________.
答案
解析 由2kπ-≤2x+≤2kπ+(k∈Z),可得
kπ-≤x≤kπ+(k∈Z),
∴g(x)的单调递增区间为(k∈Z).
又∵函数g(x)在区间和上均单调递增,
∴解得≤a<.
三角函数的图象与性质
纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.
例 (1)(2018·连云港市灌南华侨高级中学月考)为了使函数y=sin ωx(ω>0)在区间[0,1]上出现50次最大值,则ω的最小值为________.
答案 π
解析 为了使函数y=sin ωx(ω>0)在区间[0,1]上出现50次最大值,
则49×T≤1,即×≤1.
解得ω≥π,所以ω的最小值为π.
(2)设函数f(x)=cos,则下列结论正确的是________.(填序号)
①f(x)的一个周期为-2π;
②y=f(x)的图象关于直线x=对称;
③f(x+π)的一个零点为x=;
④f(x)在上单调递减.
答案 ①②③
解析 ①中,因为f(x)=cos的周期为2kπ(k∈Z),所以f(x)的一个周期为-2π,①正确;
②中,因为f(x)=cos的图象的对称轴为直线x=kπ-(k∈Z),所以y=f(x)的图象关于直线x=对称,②正确;
③中,f(x+π)=cos.令x+=kπ+(k∈Z),得x=kπ-(k∈Z),当k=1时,x=,
所以f(x+π)的一个零点为x=,③正确;
④中,因为f(x)=cos的单调递减区间为(k∈Z),
单调递增区间为(k∈Z),
所以是f(x)的单调递减区间,是f(x)的单调递增区间,④错误.故正确的结论是①②③.
(3)函数f(x)=cos(ωx+φ)(ω>0)的部分图象如图所示,则f(x)的单调递减区间为____________.
答案 ,k∈Z
解析 由图象知,周期T=2×=2,
∴=2,∴ω=π.
由π×+φ=+2kπ,k∈Z,不妨取φ=,
∴f(x)=cos.
由2kπ<πx+<2kπ+π,k∈Z,
得2k-0,ω>0).若f(x)在区间上具有单调性,且f =f =-f ,则f(x)的最小正周期为________.
答案 π
解析 记f(x)的最小正周期为T.
由题意知≥-=,
又f =f =-f ,且-=,
可作出示意图如图所示(一种情况):
∴x1=×=,
x2=×=,
∴=x2-x1=-=,∴T=π.
1.若函数f(x)=sin(ω>0)的最小正周期为π,则f 的值是________.
答案
解析 由题意,得=π,
所以ω=2,f(x)=sin.
因此f =sin=sin =.
2.函数f(x)=sin在区间上的最小值为________.
答案 -
解析 由已知x∈,
得2x-∈,
所以sin∈,
故函数f(x)=sin在区间上的最小值为-.
3.若函数y=cos x在区间[-π,a]上为增函数,则实数a的取值范围是________.
答案 (-π,0]
解析 因为y=cos x在[-π,0]上是增函数,在[0,π]上是减函数,
所以只有当-π0,
当x∈时,f′(x)<0,
∴函数f(x)的单调增区间为.
5.函数y=cos2x-2sin x的最小值为________.
答案 -2
解析 y=cos2x-2sin x=1-sin2x-2sin x
=-sin2x-2sin x+1,
令t=sin x,
则t∈[-1,1],y=-t2-2t+1=-(t+1)2+2,
所以ymin=-2.
6.设函数f(x)=3sin,若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为________.
答案 2
解析 |x1-x2|的最小值为函数f(x)的半个周期,
又T=4,∴|x1-x2|的最小值为2.
7.已知函数f(x)=2sin(2x+φ)的图象过点(0,),则f(x)图象的对称中心是_______.
答案 (k∈Z)
解析 函数f(x)=2sin(2x+φ)的图象过点(0,),则f(0)=2sin φ=,
∴sin φ=,又|φ|<,∴φ=,
则f(x)=2sin,令2x+=kπ(k∈Z),
则x=-(k∈Z),
∴函数f(x)图象的对称中心是(k∈Z).
8.已知函数f(x)=2sin+1(x∈R)图象的一条对称轴为x=π,其中ω为常数,且ω∈(1,2),则函数f(x)的最小正周期为________.
答案
解析 由函数f(x)=2sin+1(x∈R)图象的一条对称轴为x=π,
可得ωπ-=kπ+,k∈Z,
∴ω=k+,又ω∈(1,2),∴ω=,
∴函数f(x)的最小正周期为=.
9.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤对任意x∈R恒成立,且f >0,则f(x)的单调递减区间是________________.
答案 (k∈Z)
解析 由题意可得函数f(x)=sin(2x+φ)的图象关于直线x=对称,故有2×+φ=kπ+,k∈Z,即φ=kπ,k∈Z.
又f =sin>0,所以φ=2nπ,n∈Z,所以f(x)=sin(2x+2nπ)=sin 2x.
令2kπ+≤2x≤2kπ+,k∈Z,求得kπ+≤x≤kπ+,k∈Z,
故函数f(x)的单调递减区间为,k∈Z.
10.已知函数f(x)=,则下列说法正确的是________.(填序号)
①f(x)的周期是;
②f(x)的值域是{y|y∈R,且y≠0};
③直线x=是函数f(x)图象的一条对称轴;
④f(x)的单调递减区间是,k∈Z.
答案 ④
解析 函数f(x)的周期为2π,①错;f(x)的值域为[0,+∞),②错;当x=时,x-=≠,k∈Z,∴x=不是f(x)的对称轴,③错;令kπ-0)的最小正周期为π.
(1)求函数y=f(x)图象的对称轴方程;
(2)讨论函数f(x)在上的单调性.
解 (1)∵f(x)=sin ωx-cos ωx=sin(ω>0),且T=π,
∴ω=2,f(x)=sin.
令2x-=kπ+(k∈Z),得x=+(k∈Z),
即函数f(x)图象的对称轴方程为x=+(k∈Z).
(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函数f(x)的单调递增区间为(k∈Z).
因为x∈,所以令k=0,得函数f(x)在上的单调递增区间为;
令+2kπ≤2x-≤+2kπ(k∈Z),得函数f(x)的单调递减区间为(k∈Z),
令k=0,得f(x)在上的单调递减区间为.
13.定义运算:a*b=例如1*2=1,则函数f(x)=sin x*cos x的值域为 .
答案
解析 根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可,
设x∈[0,2π],当≤x≤时,sin x≥cos x,此时f(x)=cos x,f(x)∈,
当0≤x<或sin x,此时f(x)=sin x,f(x)∈∪[-1,0].
综上知f(x)的值域为.
14.已知函数f(x)=2cos(ωx+φ)+1,其图象与直线y=3相邻两个交点的距离为,若f(x)>1对任意x∈恒成立,则φ的取值范围是________.
答案
解析 由题意可得函数f(x)=2cos(ωx+φ)+1的最大值为3.∵f(x)的图象与直线y=3相邻两个交点的距离为,
∴f(x)的周期T=,∴=,解得ω=3,∴f(x)=2cos(3x+φ)+1.
∵f(x)>1对任意x∈恒成立,
∴2cos(3x+φ)+1>1,即cos(3x+φ)>0对任意x∈恒成立,
∴-+φ≥2kπ-且+φ≤2kπ+,k∈Z,解得φ≥2kπ-且φ≤2kπ,k∈Z,
即2kπ-≤φ≤2kπ,k∈Z.
结合|φ|<,可得当k=0时,φ的取值范围为.
15.已知函数f(x)=cos(2x+θ)在上单调递增,若f ≤m恒成立,则实数m的取值范围为________.
答案 [0,+∞)
解析 f(x)=cos(2x+θ),
当x∈时,-+θ≤2x+θ≤-+θ,
由函数f(x)在上是增函数得
k∈Z,
则2kπ-≤θ≤2kπ+(k∈Z).
又0≤θ≤,
∴0≤θ≤,
∵f =cos,又≤θ+≤,
∴f max=0,
∴m≥0.
16.设函数f(x)=2sin+m的图象关于直线x=π对称,其中0<ω<.
(1)求函数f(x)的最小正周期;
(2)若函数y=f(x)的图象过点(π,0),求函数f(x)在上的值域.
解 (1)由直线x=π是y=f(x)图象的一条对称轴,
可得sin=±1,
∴2ωπ-=kπ+(k∈Z),
即ω=+(k∈Z).
又0<ω<,
∴ω=,
∴函数f(x)的最小正周期为3π.
(2)由(1)知f(x)=2sin+m,
∵f(π)=0,
∴2sin+m=0,
∴m=-2,
∴f(x)=2sin-2,
当0≤x≤时,-≤x-≤,
-≤sin≤1.
∴-3≤f(x)≤0,
故函数f(x)在上的值域为[-3,0].